A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis
We show a Condition Number Theorem for the condition number of zero counting for real polynomial systems. That is, we show that this condition number equals the inverse of the normalized distance to the set of ill-posed systems (i.e., those having multiple real zeros). As a consequence, a smoothed a...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_16617738_v6_n2_p285_Cucker |
Aporte de: |
id |
todo:paper_16617738_v6_n2_p285_Cucker |
---|---|
record_format |
dspace |
spelling |
todo:paper_16617738_v6_n2_p285_Cucker2023-10-03T16:28:42Z A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis Cucker, F. Krick, T. Malajovich, G. Wschebor, M. Condition numbers Polynomial systems Smoothed analysis Zero counting We show a Condition Number Theorem for the condition number of zero counting for real polynomial systems. That is, we show that this condition number equals the inverse of the normalized distance to the set of ill-posed systems (i.e., those having multiple real zeros). As a consequence, a smoothed analysis of this condition number follows. © 2009 Birkhäuser Verlag Basel/Switzerland. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_16617738_v6_n2_p285_Cucker |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Condition numbers Polynomial systems Smoothed analysis Zero counting |
spellingShingle |
Condition numbers Polynomial systems Smoothed analysis Zero counting Cucker, F. Krick, T. Malajovich, G. Wschebor, M. A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis |
topic_facet |
Condition numbers Polynomial systems Smoothed analysis Zero counting |
description |
We show a Condition Number Theorem for the condition number of zero counting for real polynomial systems. That is, we show that this condition number equals the inverse of the normalized distance to the set of ill-posed systems (i.e., those having multiple real zeros). As a consequence, a smoothed analysis of this condition number follows. © 2009 Birkhäuser Verlag Basel/Switzerland. |
format |
JOUR |
author |
Cucker, F. Krick, T. Malajovich, G. Wschebor, M. |
author_facet |
Cucker, F. Krick, T. Malajovich, G. Wschebor, M. |
author_sort |
Cucker, F. |
title |
A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis |
title_short |
A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis |
title_full |
A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis |
title_fullStr |
A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis |
title_full_unstemmed |
A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis |
title_sort |
numerical algorithm for zero counting. ii: distance to ill-posedness and smoothed analysis |
url |
http://hdl.handle.net/20.500.12110/paper_16617738_v6_n2_p285_Cucker |
work_keys_str_mv |
AT cuckerf anumericalalgorithmforzerocountingiidistancetoillposednessandsmoothedanalysis AT krickt anumericalalgorithmforzerocountingiidistancetoillposednessandsmoothedanalysis AT malajovichg anumericalalgorithmforzerocountingiidistancetoillposednessandsmoothedanalysis AT wscheborm anumericalalgorithmforzerocountingiidistancetoillposednessandsmoothedanalysis AT cuckerf numericalalgorithmforzerocountingiidistancetoillposednessandsmoothedanalysis AT krickt numericalalgorithmforzerocountingiidistancetoillposednessandsmoothedanalysis AT malajovichg numericalalgorithmforzerocountingiidistancetoillposednessandsmoothedanalysis AT wscheborm numericalalgorithmforzerocountingiidistancetoillposednessandsmoothedanalysis |
_version_ |
1807322483549798400 |