New advances about a conjecture on Helly circle graphs
A circle graph is the intersection graph of a set of chords on a circle. A graph is Helly circle if there is a model of chords satisfying the Helly property. In 2003 it was conjectured that Helly circle graphs are exactly diamond-free circle graphs. In this work, we propose a method to compress any...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_15710653_v18_n_p31_Barrionuevo |
Aporte de: |
Sumario: | A circle graph is the intersection graph of a set of chords on a circle. A graph is Helly circle if there is a model of chords satisfying the Helly property. In 2003 it was conjectured that Helly circle graphs are exactly diamond-free circle graphs. In this work, we propose a method to compress any Helly circle representation of a graph and give some ideas to advance in an inductive proof of the diamond conjecture. © 2004 Elsevier B.V. All rights reserved. |
---|