New advances about a conjecture on Helly circle graphs

A circle graph is the intersection graph of a set of chords on a circle. A graph is Helly circle if there is a model of chords satisfying the Helly property. In 2003 it was conjectured that Helly circle graphs are exactly diamond-free circle graphs. In this work, we propose a method to compress any...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Barrionuevo, J.M., Calvo, A., Durán, G., Protti, F.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_15710653_v18_n_p31_Barrionuevo
Aporte de:
id todo:paper_15710653_v18_n_p31_Barrionuevo
record_format dspace
spelling todo:paper_15710653_v18_n_p31_Barrionuevo2023-10-03T16:27:00Z New advances about a conjecture on Helly circle graphs Barrionuevo, J.M. Calvo, A. Durán, G. Protti, F. circle graphs compression diamond Helly circle graphs A circle graph is the intersection graph of a set of chords on a circle. A graph is Helly circle if there is a model of chords satisfying the Helly property. In 2003 it was conjectured that Helly circle graphs are exactly diamond-free circle graphs. In this work, we propose a method to compress any Helly circle representation of a graph and give some ideas to advance in an inductive proof of the diamond conjecture. © 2004 Elsevier B.V. All rights reserved. Fil:Durán, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_15710653_v18_n_p31_Barrionuevo
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic circle graphs
compression
diamond
Helly circle graphs
spellingShingle circle graphs
compression
diamond
Helly circle graphs
Barrionuevo, J.M.
Calvo, A.
Durán, G.
Protti, F.
New advances about a conjecture on Helly circle graphs
topic_facet circle graphs
compression
diamond
Helly circle graphs
description A circle graph is the intersection graph of a set of chords on a circle. A graph is Helly circle if there is a model of chords satisfying the Helly property. In 2003 it was conjectured that Helly circle graphs are exactly diamond-free circle graphs. In this work, we propose a method to compress any Helly circle representation of a graph and give some ideas to advance in an inductive proof of the diamond conjecture. © 2004 Elsevier B.V. All rights reserved.
format JOUR
author Barrionuevo, J.M.
Calvo, A.
Durán, G.
Protti, F.
author_facet Barrionuevo, J.M.
Calvo, A.
Durán, G.
Protti, F.
author_sort Barrionuevo, J.M.
title New advances about a conjecture on Helly circle graphs
title_short New advances about a conjecture on Helly circle graphs
title_full New advances about a conjecture on Helly circle graphs
title_fullStr New advances about a conjecture on Helly circle graphs
title_full_unstemmed New advances about a conjecture on Helly circle graphs
title_sort new advances about a conjecture on helly circle graphs
url http://hdl.handle.net/20.500.12110/paper_15710653_v18_n_p31_Barrionuevo
work_keys_str_mv AT barrionuevojm newadvancesaboutaconjectureonhellycirclegraphs
AT calvoa newadvancesaboutaconjectureonhellycirclegraphs
AT durang newadvancesaboutaconjectureonhellycirclegraphs
AT prottif newadvancesaboutaconjectureonhellycirclegraphs
_version_ 1807316370179751936