New advances about a conjecture on Helly circle graphs
A circle graph is the intersection graph of a set of chords on a circle. A graph is Helly circle if there is a model of chords satisfying the Helly property. In 2003 it was conjectured that Helly circle graphs are exactly diamond-free circle graphs. In this work, we propose a method to compress any...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_15710653_v18_n_p31_Barrionuevo |
Aporte de: |
id |
todo:paper_15710653_v18_n_p31_Barrionuevo |
---|---|
record_format |
dspace |
spelling |
todo:paper_15710653_v18_n_p31_Barrionuevo2023-10-03T16:27:00Z New advances about a conjecture on Helly circle graphs Barrionuevo, J.M. Calvo, A. Durán, G. Protti, F. circle graphs compression diamond Helly circle graphs A circle graph is the intersection graph of a set of chords on a circle. A graph is Helly circle if there is a model of chords satisfying the Helly property. In 2003 it was conjectured that Helly circle graphs are exactly diamond-free circle graphs. In this work, we propose a method to compress any Helly circle representation of a graph and give some ideas to advance in an inductive proof of the diamond conjecture. © 2004 Elsevier B.V. All rights reserved. Fil:Durán, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_15710653_v18_n_p31_Barrionuevo |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
circle graphs compression diamond Helly circle graphs |
spellingShingle |
circle graphs compression diamond Helly circle graphs Barrionuevo, J.M. Calvo, A. Durán, G. Protti, F. New advances about a conjecture on Helly circle graphs |
topic_facet |
circle graphs compression diamond Helly circle graphs |
description |
A circle graph is the intersection graph of a set of chords on a circle. A graph is Helly circle if there is a model of chords satisfying the Helly property. In 2003 it was conjectured that Helly circle graphs are exactly diamond-free circle graphs. In this work, we propose a method to compress any Helly circle representation of a graph and give some ideas to advance in an inductive proof of the diamond conjecture. © 2004 Elsevier B.V. All rights reserved. |
format |
JOUR |
author |
Barrionuevo, J.M. Calvo, A. Durán, G. Protti, F. |
author_facet |
Barrionuevo, J.M. Calvo, A. Durán, G. Protti, F. |
author_sort |
Barrionuevo, J.M. |
title |
New advances about a conjecture on Helly circle graphs |
title_short |
New advances about a conjecture on Helly circle graphs |
title_full |
New advances about a conjecture on Helly circle graphs |
title_fullStr |
New advances about a conjecture on Helly circle graphs |
title_full_unstemmed |
New advances about a conjecture on Helly circle graphs |
title_sort |
new advances about a conjecture on helly circle graphs |
url |
http://hdl.handle.net/20.500.12110/paper_15710653_v18_n_p31_Barrionuevo |
work_keys_str_mv |
AT barrionuevojm newadvancesaboutaconjectureonhellycirclegraphs AT calvoa newadvancesaboutaconjectureonhellycirclegraphs AT durang newadvancesaboutaconjectureonhellycirclegraphs AT prottif newadvancesaboutaconjectureonhellycirclegraphs |
_version_ |
1807316370179751936 |