An obstacle problem for tug-of-war games
We consider the obstacle problem for the infinity Laplace equation. Given a Lipschitz boundary function and a Lipschitz obstacle we prove the existence and uniqueness of a super infinity-harmonic function constrained to lie above the obstacle which is infinity harmonic where it lies strictly above t...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_15340392_v14_n1_p217_Manfredi |
Aporte de: |
id |
todo:paper_15340392_v14_n1_p217_Manfredi |
---|---|
record_format |
dspace |
spelling |
todo:paper_15340392_v14_n1_p217_Manfredi2023-10-03T16:21:35Z An obstacle problem for tug-of-war games Manfredi, J.J. Rossi, J.D. Somersille, S.J. Infinity laplacian Obstacle problem Tug-of-war games We consider the obstacle problem for the infinity Laplace equation. Given a Lipschitz boundary function and a Lipschitz obstacle we prove the existence and uniqueness of a super infinity-harmonic function constrained to lie above the obstacle which is infinity harmonic where it lies strictly above the obstacle. Moreover, we show that this function is the limit of value functions of a game we call obstacle tug-of-war. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_15340392_v14_n1_p217_Manfredi |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Infinity laplacian Obstacle problem Tug-of-war games |
spellingShingle |
Infinity laplacian Obstacle problem Tug-of-war games Manfredi, J.J. Rossi, J.D. Somersille, S.J. An obstacle problem for tug-of-war games |
topic_facet |
Infinity laplacian Obstacle problem Tug-of-war games |
description |
We consider the obstacle problem for the infinity Laplace equation. Given a Lipschitz boundary function and a Lipschitz obstacle we prove the existence and uniqueness of a super infinity-harmonic function constrained to lie above the obstacle which is infinity harmonic where it lies strictly above the obstacle. Moreover, we show that this function is the limit of value functions of a game we call obstacle tug-of-war. |
format |
JOUR |
author |
Manfredi, J.J. Rossi, J.D. Somersille, S.J. |
author_facet |
Manfredi, J.J. Rossi, J.D. Somersille, S.J. |
author_sort |
Manfredi, J.J. |
title |
An obstacle problem for tug-of-war games |
title_short |
An obstacle problem for tug-of-war games |
title_full |
An obstacle problem for tug-of-war games |
title_fullStr |
An obstacle problem for tug-of-war games |
title_full_unstemmed |
An obstacle problem for tug-of-war games |
title_sort |
obstacle problem for tug-of-war games |
url |
http://hdl.handle.net/20.500.12110/paper_15340392_v14_n1_p217_Manfredi |
work_keys_str_mv |
AT manfredijj anobstacleproblemfortugofwargames AT rossijd anobstacleproblemfortugofwargames AT somersillesj anobstacleproblemfortugofwargames AT manfredijj obstacleproblemfortugofwargames AT rossijd obstacleproblemfortugofwargames AT somersillesj obstacleproblemfortugofwargames |
_version_ |
1807322240832765952 |