An obstacle problem for tug-of-war games

We consider the obstacle problem for the infinity Laplace equation. Given a Lipschitz boundary function and a Lipschitz obstacle we prove the existence and uniqueness of a super infinity-harmonic function constrained to lie above the obstacle which is infinity harmonic where it lies strictly above t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Manfredi, J.J., Rossi, J.D., Somersille, S.J.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_15340392_v14_n1_p217_Manfredi
Aporte de:
id todo:paper_15340392_v14_n1_p217_Manfredi
record_format dspace
spelling todo:paper_15340392_v14_n1_p217_Manfredi2023-10-03T16:21:35Z An obstacle problem for tug-of-war games Manfredi, J.J. Rossi, J.D. Somersille, S.J. Infinity laplacian Obstacle problem Tug-of-war games We consider the obstacle problem for the infinity Laplace equation. Given a Lipschitz boundary function and a Lipschitz obstacle we prove the existence and uniqueness of a super infinity-harmonic function constrained to lie above the obstacle which is infinity harmonic where it lies strictly above the obstacle. Moreover, we show that this function is the limit of value functions of a game we call obstacle tug-of-war. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_15340392_v14_n1_p217_Manfredi
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Infinity laplacian
Obstacle problem
Tug-of-war games
spellingShingle Infinity laplacian
Obstacle problem
Tug-of-war games
Manfredi, J.J.
Rossi, J.D.
Somersille, S.J.
An obstacle problem for tug-of-war games
topic_facet Infinity laplacian
Obstacle problem
Tug-of-war games
description We consider the obstacle problem for the infinity Laplace equation. Given a Lipschitz boundary function and a Lipschitz obstacle we prove the existence and uniqueness of a super infinity-harmonic function constrained to lie above the obstacle which is infinity harmonic where it lies strictly above the obstacle. Moreover, we show that this function is the limit of value functions of a game we call obstacle tug-of-war.
format JOUR
author Manfredi, J.J.
Rossi, J.D.
Somersille, S.J.
author_facet Manfredi, J.J.
Rossi, J.D.
Somersille, S.J.
author_sort Manfredi, J.J.
title An obstacle problem for tug-of-war games
title_short An obstacle problem for tug-of-war games
title_full An obstacle problem for tug-of-war games
title_fullStr An obstacle problem for tug-of-war games
title_full_unstemmed An obstacle problem for tug-of-war games
title_sort obstacle problem for tug-of-war games
url http://hdl.handle.net/20.500.12110/paper_15340392_v14_n1_p217_Manfredi
work_keys_str_mv AT manfredijj anobstacleproblemfortugofwargames
AT rossijd anobstacleproblemfortugofwargames
AT somersillesj anobstacleproblemfortugofwargames
AT manfredijj obstacleproblemfortugofwargames
AT rossijd obstacleproblemfortugofwargames
AT somersillesj obstacleproblemfortugofwargames
_version_ 1807322240832765952