The Neumann problem for nonlocal nonlinear diffusion equations
We study nonlocal diffusion models of the form (γ(u))_t (t, x) = \\int_{\\Omega} J(x-y)(u(t, y) - u(t, x))\\, dy. Here Ω is a bounded smooth domain andγ is a maximal monotone graph in {{R}}2. This is a nonlocal diffusion problem analogous with the usual Laplacian with Neumann boundary conditions. We...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_14243199_v8_n1_p189_Andreu |
Aporte de: |
id |
todo:paper_14243199_v8_n1_p189_Andreu |
---|---|
record_format |
dspace |
spelling |
todo:paper_14243199_v8_n1_p189_Andreu2023-10-03T16:13:34Z The Neumann problem for nonlocal nonlinear diffusion equations Andreu, F. Mazón, J.M. Rossi, J.D. Toledo, J. Asymptotic behaviour Neumann boundary conditions Nonlocal diffusion We study nonlocal diffusion models of the form (γ(u))_t (t, x) = \\int_{\\Omega} J(x-y)(u(t, y) - u(t, x))\\, dy. Here Ω is a bounded smooth domain andγ is a maximal monotone graph in {{R}}2. This is a nonlocal diffusion problem analogous with the usual Laplacian with Neumann boundary conditions. We prove existence and uniqueness of solutions with initial conditions in L 1 (Ω). Moreover, when γ is a continuous function we find the asymptotic behaviour of the solutions, they converge as t → ∞ to the mean value of the initial condition. © 2007 Birkhaueser. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_14243199_v8_n1_p189_Andreu |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Asymptotic behaviour Neumann boundary conditions Nonlocal diffusion |
spellingShingle |
Asymptotic behaviour Neumann boundary conditions Nonlocal diffusion Andreu, F. Mazón, J.M. Rossi, J.D. Toledo, J. The Neumann problem for nonlocal nonlinear diffusion equations |
topic_facet |
Asymptotic behaviour Neumann boundary conditions Nonlocal diffusion |
description |
We study nonlocal diffusion models of the form (γ(u))_t (t, x) = \\int_{\\Omega} J(x-y)(u(t, y) - u(t, x))\\, dy. Here Ω is a bounded smooth domain andγ is a maximal monotone graph in {{R}}2. This is a nonlocal diffusion problem analogous with the usual Laplacian with Neumann boundary conditions. We prove existence and uniqueness of solutions with initial conditions in L 1 (Ω). Moreover, when γ is a continuous function we find the asymptotic behaviour of the solutions, they converge as t → ∞ to the mean value of the initial condition. © 2007 Birkhaueser. |
format |
JOUR |
author |
Andreu, F. Mazón, J.M. Rossi, J.D. Toledo, J. |
author_facet |
Andreu, F. Mazón, J.M. Rossi, J.D. Toledo, J. |
author_sort |
Andreu, F. |
title |
The Neumann problem for nonlocal nonlinear diffusion equations |
title_short |
The Neumann problem for nonlocal nonlinear diffusion equations |
title_full |
The Neumann problem for nonlocal nonlinear diffusion equations |
title_fullStr |
The Neumann problem for nonlocal nonlinear diffusion equations |
title_full_unstemmed |
The Neumann problem for nonlocal nonlinear diffusion equations |
title_sort |
neumann problem for nonlocal nonlinear diffusion equations |
url |
http://hdl.handle.net/20.500.12110/paper_14243199_v8_n1_p189_Andreu |
work_keys_str_mv |
AT andreuf theneumannproblemfornonlocalnonlineardiffusionequations AT mazonjm theneumannproblemfornonlocalnonlineardiffusionequations AT rossijd theneumannproblemfornonlocalnonlineardiffusionequations AT toledoj theneumannproblemfornonlocalnonlineardiffusionequations AT andreuf neumannproblemfornonlocalnonlineardiffusionequations AT mazonjm neumannproblemfornonlocalnonlineardiffusionequations AT rossijd neumannproblemfornonlocalnonlineardiffusionequations AT toledoj neumannproblemfornonlocalnonlineardiffusionequations |
_version_ |
1807317581871185920 |