Nanomagnet coupled to quantum spin Hall edge: An adiabatic quantum motor

The precessing magnetization of a magnetic islands coupled to a quantum spin Hall edge pumps charge along the edge. Conversely, a bias voltage applied to the edge makes the magnetization precess. We point out that this device realizes an adiabatic quantum motor and discuss the efficiency of its oper...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Arrachea, L., Von Oppen, F.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_13869477_v74_n_p596_Arrachea
Aporte de:
id todo:paper_13869477_v74_n_p596_Arrachea
record_format dspace
spelling todo:paper_13869477_v74_n_p596_Arrachea2023-10-03T16:12:25Z Nanomagnet coupled to quantum spin Hall edge: An adiabatic quantum motor Arrachea, L. Von Oppen, F. Magnetization dynamics Quantum spin Hall effect Topological insulators Magnetization Scattering parameters Spin dynamics Spin Hall effect Landau-Lifshitz-Gilbert equations Magnetization dynamics Quantum Spin hall effect Quantum spin halls Scattering matrix approach Scattering theory Spin transfer torque Topological insulators Quantum Hall effect The precessing magnetization of a magnetic islands coupled to a quantum spin Hall edge pumps charge along the edge. Conversely, a bias voltage applied to the edge makes the magnetization precess. We point out that this device realizes an adiabatic quantum motor and discuss the efficiency of its operation based on a scattering matrix approach akin to Landauer-Büttiker theory. Scattering theory provides a microscopic derivation of the Landau-Lifshitz-Gilbert equation for the magnetization dynamics of the device, including spin-transfer torque, Gilbert damping, and Langevin torque. We find that the device can be viewed as a Thouless motor, attaining unit efficiency when the chemical potential of the edge states falls into the magnetization-induced gap. For more general parameters, we characterize the device by means of a figure of merit analogous to the ZT value in thermoelectrics. © 2015 Elsevier B.V. All rights reserved. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_13869477_v74_n_p596_Arrachea
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Magnetization dynamics
Quantum spin Hall effect
Topological insulators
Magnetization
Scattering parameters
Spin dynamics
Spin Hall effect
Landau-Lifshitz-Gilbert equations
Magnetization dynamics
Quantum Spin hall effect
Quantum spin halls
Scattering matrix approach
Scattering theory
Spin transfer torque
Topological insulators
Quantum Hall effect
spellingShingle Magnetization dynamics
Quantum spin Hall effect
Topological insulators
Magnetization
Scattering parameters
Spin dynamics
Spin Hall effect
Landau-Lifshitz-Gilbert equations
Magnetization dynamics
Quantum Spin hall effect
Quantum spin halls
Scattering matrix approach
Scattering theory
Spin transfer torque
Topological insulators
Quantum Hall effect
Arrachea, L.
Von Oppen, F.
Nanomagnet coupled to quantum spin Hall edge: An adiabatic quantum motor
topic_facet Magnetization dynamics
Quantum spin Hall effect
Topological insulators
Magnetization
Scattering parameters
Spin dynamics
Spin Hall effect
Landau-Lifshitz-Gilbert equations
Magnetization dynamics
Quantum Spin hall effect
Quantum spin halls
Scattering matrix approach
Scattering theory
Spin transfer torque
Topological insulators
Quantum Hall effect
description The precessing magnetization of a magnetic islands coupled to a quantum spin Hall edge pumps charge along the edge. Conversely, a bias voltage applied to the edge makes the magnetization precess. We point out that this device realizes an adiabatic quantum motor and discuss the efficiency of its operation based on a scattering matrix approach akin to Landauer-Büttiker theory. Scattering theory provides a microscopic derivation of the Landau-Lifshitz-Gilbert equation for the magnetization dynamics of the device, including spin-transfer torque, Gilbert damping, and Langevin torque. We find that the device can be viewed as a Thouless motor, attaining unit efficiency when the chemical potential of the edge states falls into the magnetization-induced gap. For more general parameters, we characterize the device by means of a figure of merit analogous to the ZT value in thermoelectrics. © 2015 Elsevier B.V. All rights reserved.
format JOUR
author Arrachea, L.
Von Oppen, F.
author_facet Arrachea, L.
Von Oppen, F.
author_sort Arrachea, L.
title Nanomagnet coupled to quantum spin Hall edge: An adiabatic quantum motor
title_short Nanomagnet coupled to quantum spin Hall edge: An adiabatic quantum motor
title_full Nanomagnet coupled to quantum spin Hall edge: An adiabatic quantum motor
title_fullStr Nanomagnet coupled to quantum spin Hall edge: An adiabatic quantum motor
title_full_unstemmed Nanomagnet coupled to quantum spin Hall edge: An adiabatic quantum motor
title_sort nanomagnet coupled to quantum spin hall edge: an adiabatic quantum motor
url http://hdl.handle.net/20.500.12110/paper_13869477_v74_n_p596_Arrachea
work_keys_str_mv AT arracheal nanomagnetcoupledtoquantumspinhalledgeanadiabaticquantummotor
AT vonoppenf nanomagnetcoupledtoquantumspinhalledgeanadiabaticquantummotor
_version_ 1782027392707985408