Continuity and differentiability of regression M functionals

This paper deals with the Fisher-consistency, weak continuity and differentiability of estimating functionals corresponding to a class of both linear and nonlinear regression high breakdown M estimates, which includes S and MM estimates. A restricted type of differentiability, called weak differenti...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fasano, M.V., Maronna, R.A., Sued, M., Yohai, V.J.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_13507265_v18_n4_p1284_Fasano
Aporte de:
id todo:paper_13507265_v18_n4_p1284_Fasano
record_format dspace
spelling todo:paper_13507265_v18_n4_p1284_Fasano2023-10-03T16:10:03Z Continuity and differentiability of regression M functionals Fasano, M.V. Maronna, R.A. Sued, M. Yohai, V.J. Asymptotic normality Consistency MM estimates Nonlinear regression S estimates This paper deals with the Fisher-consistency, weak continuity and differentiability of estimating functionals corresponding to a class of both linear and nonlinear regression high breakdown M estimates, which includes S and MM estimates. A restricted type of differentiability, called weak differentiability, is defined, which suffices to prove the asymptotic normality of estimates based on the functionals. This approach allows to prove the consistency, asymptotic normality and qualitative robustness of M estimates under more general conditions than those required in standard approaches. In particular, we prove that regression MMestimates are asymptotically normal when the observations are φ-mixing. © 2012 ISI/BS. Fil:Maronna, R.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Sued, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_13507265_v18_n4_p1284_Fasano
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Asymptotic normality
Consistency
MM estimates
Nonlinear regression
S estimates
spellingShingle Asymptotic normality
Consistency
MM estimates
Nonlinear regression
S estimates
Fasano, M.V.
Maronna, R.A.
Sued, M.
Yohai, V.J.
Continuity and differentiability of regression M functionals
topic_facet Asymptotic normality
Consistency
MM estimates
Nonlinear regression
S estimates
description This paper deals with the Fisher-consistency, weak continuity and differentiability of estimating functionals corresponding to a class of both linear and nonlinear regression high breakdown M estimates, which includes S and MM estimates. A restricted type of differentiability, called weak differentiability, is defined, which suffices to prove the asymptotic normality of estimates based on the functionals. This approach allows to prove the consistency, asymptotic normality and qualitative robustness of M estimates under more general conditions than those required in standard approaches. In particular, we prove that regression MMestimates are asymptotically normal when the observations are φ-mixing. © 2012 ISI/BS.
format JOUR
author Fasano, M.V.
Maronna, R.A.
Sued, M.
Yohai, V.J.
author_facet Fasano, M.V.
Maronna, R.A.
Sued, M.
Yohai, V.J.
author_sort Fasano, M.V.
title Continuity and differentiability of regression M functionals
title_short Continuity and differentiability of regression M functionals
title_full Continuity and differentiability of regression M functionals
title_fullStr Continuity and differentiability of regression M functionals
title_full_unstemmed Continuity and differentiability of regression M functionals
title_sort continuity and differentiability of regression m functionals
url http://hdl.handle.net/20.500.12110/paper_13507265_v18_n4_p1284_Fasano
work_keys_str_mv AT fasanomv continuityanddifferentiabilityofregressionmfunctionals
AT maronnara continuityanddifferentiabilityofregressionmfunctionals
AT suedm continuityanddifferentiabilityofregressionmfunctionals
AT yohaivj continuityanddifferentiabilityofregressionmfunctionals
_version_ 1807318835574865920