A variable exponent diffusion problem of concave-convex nature

We deal with the problem (formula presented) Where Ω ⊂ ℝN is a bounded smooth domain, λ > 0 is a parameter and the exponent q(x) is a continuous positive function that takes values both greater than and less than one in Ω. It is therefore a kind of concave-convex problem where the presence of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: García-Melián, J., Rossi, J.D., de Lis, J.C.S.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_12303429_v47_n2_p613_GarciaMelian
Aporte de:
id todo:paper_12303429_v47_n2_p613_GarciaMelian
record_format dspace
spelling todo:paper_12303429_v47_n2_p613_GarciaMelian2023-10-03T16:09:09Z A variable exponent diffusion problem of concave-convex nature García-Melián, J. Rossi, J.D. de Lis, J.C.S. A priori bounds Concave-convex Leray–Schauder degree Minimal solution Variable exponent We deal with the problem (formula presented) Where Ω ⊂ ℝN is a bounded smooth domain, λ > 0 is a parameter and the exponent q(x) is a continuous positive function that takes values both greater than and less than one in Ω. It is therefore a kind of concave-convex problem where the presence of the interphase q = 1 in Ω poses some new diffculties to be tackled. The results proved in this work are the existence of λ* > 0 such that no positive solutions are possible for λ > λ*, the existence and structural properties of a branch of minimal solutions, uλ, 0 < λ < λ*, and, finally, the existence for all λ ∊ (0; λ*) of a second positive solution. © 2016 Juliusz Schauder Centre for Nonlinear Studies. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_12303429_v47_n2_p613_GarciaMelian
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic A priori bounds
Concave-convex
Leray–Schauder degree
Minimal solution
Variable exponent
spellingShingle A priori bounds
Concave-convex
Leray–Schauder degree
Minimal solution
Variable exponent
García-Melián, J.
Rossi, J.D.
de Lis, J.C.S.
A variable exponent diffusion problem of concave-convex nature
topic_facet A priori bounds
Concave-convex
Leray–Schauder degree
Minimal solution
Variable exponent
description We deal with the problem (formula presented) Where Ω ⊂ ℝN is a bounded smooth domain, λ > 0 is a parameter and the exponent q(x) is a continuous positive function that takes values both greater than and less than one in Ω. It is therefore a kind of concave-convex problem where the presence of the interphase q = 1 in Ω poses some new diffculties to be tackled. The results proved in this work are the existence of λ* > 0 such that no positive solutions are possible for λ > λ*, the existence and structural properties of a branch of minimal solutions, uλ, 0 < λ < λ*, and, finally, the existence for all λ ∊ (0; λ*) of a second positive solution. © 2016 Juliusz Schauder Centre for Nonlinear Studies.
format JOUR
author García-Melián, J.
Rossi, J.D.
de Lis, J.C.S.
author_facet García-Melián, J.
Rossi, J.D.
de Lis, J.C.S.
author_sort García-Melián, J.
title A variable exponent diffusion problem of concave-convex nature
title_short A variable exponent diffusion problem of concave-convex nature
title_full A variable exponent diffusion problem of concave-convex nature
title_fullStr A variable exponent diffusion problem of concave-convex nature
title_full_unstemmed A variable exponent diffusion problem of concave-convex nature
title_sort variable exponent diffusion problem of concave-convex nature
url http://hdl.handle.net/20.500.12110/paper_12303429_v47_n2_p613_GarciaMelian
work_keys_str_mv AT garciamelianj avariableexponentdiffusionproblemofconcaveconvexnature
AT rossijd avariableexponentdiffusionproblemofconcaveconvexnature
AT delisjcs avariableexponentdiffusionproblemofconcaveconvexnature
AT garciamelianj variableexponentdiffusionproblemofconcaveconvexnature
AT rossijd variableexponentdiffusionproblemofconcaveconvexnature
AT delisjcs variableexponentdiffusionproblemofconcaveconvexnature
_version_ 1807323369503195136