Isoparametric hypersurfaces and metrics of constant scalar curvature

We showed the existence of non-radial solutions of the equation δu - λu + λuq = 0 on the round sphere Sm, for q < (m+2)/(m-2), and study the number of such solutions in terms of λ. We show that for any isoparametric hypersurface M ⊂ Sm there are solutions such that M is a regular level set (a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Henry, G., Petean, J.
Formato: SER
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_10936106_v18_n1_p53_Henry
Aporte de:
id todo:paper_10936106_v18_n1_p53_Henry
record_format dspace
spelling todo:paper_10936106_v18_n1_p53_Henry2023-10-03T16:05:01Z Isoparametric hypersurfaces and metrics of constant scalar curvature Henry, G. Petean, J. Isoparametric hypersurfaces Yamabe equation We showed the existence of non-radial solutions of the equation δu - λu + λuq = 0 on the round sphere Sm, for q < (m+2)/(m-2), and study the number of such solutions in terms of λ. We show that for any isoparametric hypersurface M ⊂ Sm there are solutions such that M is a regular level set (and the number of such solutions increases with λ). We also show similar results for isoparametric hypersurfaces in general Riemannian manifolds. These solutions give multiplicity results for metrics of constant scalar curvature on conformal classes of Riemannian products. © 2014 International Press. Fil:Henry, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Petean, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. SER info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_10936106_v18_n1_p53_Henry
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Isoparametric hypersurfaces
Yamabe equation
spellingShingle Isoparametric hypersurfaces
Yamabe equation
Henry, G.
Petean, J.
Isoparametric hypersurfaces and metrics of constant scalar curvature
topic_facet Isoparametric hypersurfaces
Yamabe equation
description We showed the existence of non-radial solutions of the equation δu - λu + λuq = 0 on the round sphere Sm, for q < (m+2)/(m-2), and study the number of such solutions in terms of λ. We show that for any isoparametric hypersurface M ⊂ Sm there are solutions such that M is a regular level set (and the number of such solutions increases with λ). We also show similar results for isoparametric hypersurfaces in general Riemannian manifolds. These solutions give multiplicity results for metrics of constant scalar curvature on conformal classes of Riemannian products. © 2014 International Press.
format SER
author Henry, G.
Petean, J.
author_facet Henry, G.
Petean, J.
author_sort Henry, G.
title Isoparametric hypersurfaces and metrics of constant scalar curvature
title_short Isoparametric hypersurfaces and metrics of constant scalar curvature
title_full Isoparametric hypersurfaces and metrics of constant scalar curvature
title_fullStr Isoparametric hypersurfaces and metrics of constant scalar curvature
title_full_unstemmed Isoparametric hypersurfaces and metrics of constant scalar curvature
title_sort isoparametric hypersurfaces and metrics of constant scalar curvature
url http://hdl.handle.net/20.500.12110/paper_10936106_v18_n1_p53_Henry
work_keys_str_mv AT henryg isoparametrichypersurfacesandmetricsofconstantscalarcurvature
AT peteanj isoparametrichypersurfacesandmetricsofconstantscalarcurvature
_version_ 1807321175004545024