Range of semilinear operators for systems at resonance

For a vector function u: ℝ→ ℝ N we consider the system, where G: ℝ N → ℝ is a C 1 function. We are interested in finding all possible T-periodic forcing terms p(t) for which there is at least one solution. In other words, we examine the range of the semilinear operator S: H 2 per → L 2([0, T],ℝ N) g...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Amster, P., Kuna, M.P.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_10726691_v2012_n_p_Amster
Aporte de:
id todo:paper_10726691_v2012_n_p_Amster
record_format dspace
spelling todo:paper_10726691_v2012_n_p_Amster2023-10-03T16:02:49Z Range of semilinear operators for systems at resonance Amster, P. Kuna, M.P. Critical point theory Resonant systems Semilinear operators For a vector function u: ℝ→ ℝ N we consider the system, where G: ℝ N → ℝ is a C 1 function. We are interested in finding all possible T-periodic forcing terms p(t) for which there is at least one solution. In other words, we examine the range of the semilinear operator S: H 2 per → L 2([0, T],ℝ N) given by, where. Writing p(t) = p̄ + p̄(t), where, we present several resultsconcerning the topological structure of the set. © 2012 Texas State University-San Marcos. Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_10726691_v2012_n_p_Amster
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Critical point theory
Resonant systems
Semilinear operators
spellingShingle Critical point theory
Resonant systems
Semilinear operators
Amster, P.
Kuna, M.P.
Range of semilinear operators for systems at resonance
topic_facet Critical point theory
Resonant systems
Semilinear operators
description For a vector function u: ℝ→ ℝ N we consider the system, where G: ℝ N → ℝ is a C 1 function. We are interested in finding all possible T-periodic forcing terms p(t) for which there is at least one solution. In other words, we examine the range of the semilinear operator S: H 2 per → L 2([0, T],ℝ N) given by, where. Writing p(t) = p̄ + p̄(t), where, we present several resultsconcerning the topological structure of the set. © 2012 Texas State University-San Marcos.
format JOUR
author Amster, P.
Kuna, M.P.
author_facet Amster, P.
Kuna, M.P.
author_sort Amster, P.
title Range of semilinear operators for systems at resonance
title_short Range of semilinear operators for systems at resonance
title_full Range of semilinear operators for systems at resonance
title_fullStr Range of semilinear operators for systems at resonance
title_full_unstemmed Range of semilinear operators for systems at resonance
title_sort range of semilinear operators for systems at resonance
url http://hdl.handle.net/20.500.12110/paper_10726691_v2012_n_p_Amster
work_keys_str_mv AT amsterp rangeofsemilinearoperatorsforsystemsatresonance
AT kunamp rangeofsemilinearoperatorsforsystemsatresonance
_version_ 1782029850440105984