Master Langevin equations: Origin of asymptotic diffusion

We extend the master-equation treatment of dynamical evolution of a system-plus-reservoir configuration including the propagation of initial correlations as a noise source. Specializing into the quantum harmonic oscillator coupled to a fermionic heat bath, we develop a model for the diffusion matrix...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dorso, C.O., Hernndez, E.S., Vega, J.L.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_1063651X_v47_n1_p300_Dorso
Aporte de:
id todo:paper_1063651X_v47_n1_p300_Dorso
record_format dspace
spelling todo:paper_1063651X_v47_n1_p300_Dorso2023-10-03T16:01:12Z Master Langevin equations: Origin of asymptotic diffusion Dorso, C.O. Hernndez, E.S. Vega, J.L. We extend the master-equation treatment of dynamical evolution of a system-plus-reservoir configuration including the propagation of initial correlations as a noise source. Specializing into the quantum harmonic oscillator coupled to a fermionic heat bath, we develop a model for the diffusion matrix in the space of diagonal density operators. It can be shown that mean values of observables undergo Langevin-like motion and, in particular, that the mean value and dispersion of the oscillator quanta approach the canonical equilibrium values. A final interpretation of the characteristics and role of the noise source is given. © 1993 The American Physical Society. Fil:Dorso, C.O. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Vega, J.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_1063651X_v47_n1_p300_Dorso
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We extend the master-equation treatment of dynamical evolution of a system-plus-reservoir configuration including the propagation of initial correlations as a noise source. Specializing into the quantum harmonic oscillator coupled to a fermionic heat bath, we develop a model for the diffusion matrix in the space of diagonal density operators. It can be shown that mean values of observables undergo Langevin-like motion and, in particular, that the mean value and dispersion of the oscillator quanta approach the canonical equilibrium values. A final interpretation of the characteristics and role of the noise source is given. © 1993 The American Physical Society.
format JOUR
author Dorso, C.O.
Hernndez, E.S.
Vega, J.L.
spellingShingle Dorso, C.O.
Hernndez, E.S.
Vega, J.L.
Master Langevin equations: Origin of asymptotic diffusion
author_facet Dorso, C.O.
Hernndez, E.S.
Vega, J.L.
author_sort Dorso, C.O.
title Master Langevin equations: Origin of asymptotic diffusion
title_short Master Langevin equations: Origin of asymptotic diffusion
title_full Master Langevin equations: Origin of asymptotic diffusion
title_fullStr Master Langevin equations: Origin of asymptotic diffusion
title_full_unstemmed Master Langevin equations: Origin of asymptotic diffusion
title_sort master langevin equations: origin of asymptotic diffusion
url http://hdl.handle.net/20.500.12110/paper_1063651X_v47_n1_p300_Dorso
work_keys_str_mv AT dorsoco masterlangevinequationsoriginofasymptoticdiffusion
AT hernndezes masterlangevinequationsoriginofasymptoticdiffusion
AT vegajl masterlangevinequationsoriginofasymptoticdiffusion
_version_ 1807319933084762112