Energy barriers for vortex nucleation in dipolar condensates
We consider singly-quantized vortex states in a condensate of 52Cr atoms in a pancake trap. We obtain the vortex solutions by numerically solving the Gross-Pitaevskii equation in the rotating frame with no further approximations. The behavior of the condensate is studied under three different situat...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_1054660X_v20_n5_p1190_Abad |
Aporte de: |
id |
todo:paper_1054660X_v20_n5_p1190_Abad |
---|---|
record_format |
dspace |
spelling |
todo:paper_1054660X_v20_n5_p1190_Abad2023-10-03T16:00:46Z Energy barriers for vortex nucleation in dipolar condensates Abad, M. Guilleumas, M. Mayol, R. Pi, M. Jezek, D.M. Contact interaction Cr atoms Gross-Pitaevskii equation Numerical calculation Rotating frame Rotation axis Thomas-Fermi approximation Vortex displacements Vortex nucleation Vortex solutions Vortex state Bose-Einstein condensation Energy barriers Mathematical models Nucleation Quantum optics Rotation Shear waves Vortex flow We consider singly-quantized vortex states in a condensate of 52Cr atoms in a pancake trap. We obtain the vortex solutions by numerically solving the Gross-Pitaevskii equation in the rotating frame with no further approximations. The behavior of the condensate is studied under three different situations concerning the interactions: only s-wave, s-wave plus dipolar and only dipolar. The energy barrier for the nucleation of a vortex is calculated as a function of the vortex displacement from the rotation axis in the three cases. These results are compared to those obtained for contact interaction condensates in the Thomas-Fermi approximation, and to a pseudo-analytical model, showing this latter a very good agreement with the numerical calculation. © Pleiades Publishing, Ltd., 2010. Fil:Jezek, D.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_1054660X_v20_n5_p1190_Abad |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Contact interaction Cr atoms Gross-Pitaevskii equation Numerical calculation Rotating frame Rotation axis Thomas-Fermi approximation Vortex displacements Vortex nucleation Vortex solutions Vortex state Bose-Einstein condensation Energy barriers Mathematical models Nucleation Quantum optics Rotation Shear waves Vortex flow |
spellingShingle |
Contact interaction Cr atoms Gross-Pitaevskii equation Numerical calculation Rotating frame Rotation axis Thomas-Fermi approximation Vortex displacements Vortex nucleation Vortex solutions Vortex state Bose-Einstein condensation Energy barriers Mathematical models Nucleation Quantum optics Rotation Shear waves Vortex flow Abad, M. Guilleumas, M. Mayol, R. Pi, M. Jezek, D.M. Energy barriers for vortex nucleation in dipolar condensates |
topic_facet |
Contact interaction Cr atoms Gross-Pitaevskii equation Numerical calculation Rotating frame Rotation axis Thomas-Fermi approximation Vortex displacements Vortex nucleation Vortex solutions Vortex state Bose-Einstein condensation Energy barriers Mathematical models Nucleation Quantum optics Rotation Shear waves Vortex flow |
description |
We consider singly-quantized vortex states in a condensate of 52Cr atoms in a pancake trap. We obtain the vortex solutions by numerically solving the Gross-Pitaevskii equation in the rotating frame with no further approximations. The behavior of the condensate is studied under three different situations concerning the interactions: only s-wave, s-wave plus dipolar and only dipolar. The energy barrier for the nucleation of a vortex is calculated as a function of the vortex displacement from the rotation axis in the three cases. These results are compared to those obtained for contact interaction condensates in the Thomas-Fermi approximation, and to a pseudo-analytical model, showing this latter a very good agreement with the numerical calculation. © Pleiades Publishing, Ltd., 2010. |
format |
JOUR |
author |
Abad, M. Guilleumas, M. Mayol, R. Pi, M. Jezek, D.M. |
author_facet |
Abad, M. Guilleumas, M. Mayol, R. Pi, M. Jezek, D.M. |
author_sort |
Abad, M. |
title |
Energy barriers for vortex nucleation in dipolar condensates |
title_short |
Energy barriers for vortex nucleation in dipolar condensates |
title_full |
Energy barriers for vortex nucleation in dipolar condensates |
title_fullStr |
Energy barriers for vortex nucleation in dipolar condensates |
title_full_unstemmed |
Energy barriers for vortex nucleation in dipolar condensates |
title_sort |
energy barriers for vortex nucleation in dipolar condensates |
url |
http://hdl.handle.net/20.500.12110/paper_1054660X_v20_n5_p1190_Abad |
work_keys_str_mv |
AT abadm energybarriersforvortexnucleationindipolarcondensates AT guilleumasm energybarriersforvortexnucleationindipolarcondensates AT mayolr energybarriersforvortexnucleationindipolarcondensates AT pim energybarriersforvortexnucleationindipolarcondensates AT jezekdm energybarriersforvortexnucleationindipolarcondensates |
_version_ |
1807314846866210816 |