Energy barriers for vortex nucleation in dipolar condensates

We consider singly-quantized vortex states in a condensate of 52Cr atoms in a pancake trap. We obtain the vortex solutions by numerically solving the Gross-Pitaevskii equation in the rotating frame with no further approximations. The behavior of the condensate is studied under three different situat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Abad, M., Guilleumas, M., Mayol, R., Pi, M., Jezek, D.M.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_1054660X_v20_n5_p1190_Abad
Aporte de:
id todo:paper_1054660X_v20_n5_p1190_Abad
record_format dspace
spelling todo:paper_1054660X_v20_n5_p1190_Abad2023-10-03T16:00:46Z Energy barriers for vortex nucleation in dipolar condensates Abad, M. Guilleumas, M. Mayol, R. Pi, M. Jezek, D.M. Contact interaction Cr atoms Gross-Pitaevskii equation Numerical calculation Rotating frame Rotation axis Thomas-Fermi approximation Vortex displacements Vortex nucleation Vortex solutions Vortex state Bose-Einstein condensation Energy barriers Mathematical models Nucleation Quantum optics Rotation Shear waves Vortex flow We consider singly-quantized vortex states in a condensate of 52Cr atoms in a pancake trap. We obtain the vortex solutions by numerically solving the Gross-Pitaevskii equation in the rotating frame with no further approximations. The behavior of the condensate is studied under three different situations concerning the interactions: only s-wave, s-wave plus dipolar and only dipolar. The energy barrier for the nucleation of a vortex is calculated as a function of the vortex displacement from the rotation axis in the three cases. These results are compared to those obtained for contact interaction condensates in the Thomas-Fermi approximation, and to a pseudo-analytical model, showing this latter a very good agreement with the numerical calculation. © Pleiades Publishing, Ltd., 2010. Fil:Jezek, D.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_1054660X_v20_n5_p1190_Abad
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Contact interaction
Cr atoms
Gross-Pitaevskii equation
Numerical calculation
Rotating frame
Rotation axis
Thomas-Fermi approximation
Vortex displacements
Vortex nucleation
Vortex solutions
Vortex state
Bose-Einstein condensation
Energy barriers
Mathematical models
Nucleation
Quantum optics
Rotation
Shear waves
Vortex flow
spellingShingle Contact interaction
Cr atoms
Gross-Pitaevskii equation
Numerical calculation
Rotating frame
Rotation axis
Thomas-Fermi approximation
Vortex displacements
Vortex nucleation
Vortex solutions
Vortex state
Bose-Einstein condensation
Energy barriers
Mathematical models
Nucleation
Quantum optics
Rotation
Shear waves
Vortex flow
Abad, M.
Guilleumas, M.
Mayol, R.
Pi, M.
Jezek, D.M.
Energy barriers for vortex nucleation in dipolar condensates
topic_facet Contact interaction
Cr atoms
Gross-Pitaevskii equation
Numerical calculation
Rotating frame
Rotation axis
Thomas-Fermi approximation
Vortex displacements
Vortex nucleation
Vortex solutions
Vortex state
Bose-Einstein condensation
Energy barriers
Mathematical models
Nucleation
Quantum optics
Rotation
Shear waves
Vortex flow
description We consider singly-quantized vortex states in a condensate of 52Cr atoms in a pancake trap. We obtain the vortex solutions by numerically solving the Gross-Pitaevskii equation in the rotating frame with no further approximations. The behavior of the condensate is studied under three different situations concerning the interactions: only s-wave, s-wave plus dipolar and only dipolar. The energy barrier for the nucleation of a vortex is calculated as a function of the vortex displacement from the rotation axis in the three cases. These results are compared to those obtained for contact interaction condensates in the Thomas-Fermi approximation, and to a pseudo-analytical model, showing this latter a very good agreement with the numerical calculation. © Pleiades Publishing, Ltd., 2010.
format JOUR
author Abad, M.
Guilleumas, M.
Mayol, R.
Pi, M.
Jezek, D.M.
author_facet Abad, M.
Guilleumas, M.
Mayol, R.
Pi, M.
Jezek, D.M.
author_sort Abad, M.
title Energy barriers for vortex nucleation in dipolar condensates
title_short Energy barriers for vortex nucleation in dipolar condensates
title_full Energy barriers for vortex nucleation in dipolar condensates
title_fullStr Energy barriers for vortex nucleation in dipolar condensates
title_full_unstemmed Energy barriers for vortex nucleation in dipolar condensates
title_sort energy barriers for vortex nucleation in dipolar condensates
url http://hdl.handle.net/20.500.12110/paper_1054660X_v20_n5_p1190_Abad
work_keys_str_mv AT abadm energybarriersforvortexnucleationindipolarcondensates
AT guilleumasm energybarriersforvortexnucleationindipolarcondensates
AT mayolr energybarriersforvortexnucleationindipolarcondensates
AT pim energybarriersforvortexnucleationindipolarcondensates
AT jezekdm energybarriersforvortexnucleationindipolarcondensates
_version_ 1807314846866210816