S-model calculations for high-energy-electron-impact double ionization of helium

In this paper the double ionization of helium by high-energy electron impact is studied. The corresponding four-body Schrödinger equation is transformed into a set of driven equations containing successive orders in the projectile-target interaction. The transition amplitude obtained from the asympt...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gasaneo, G., Mitnik, D.M., Randazzo, J.M., Ancarani, L.U., Colavecchia, F.D.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_10502947_v87_n4_p_Gasaneo
Aporte de:
id todo:paper_10502947_v87_n4_p_Gasaneo
record_format dspace
spelling todo:paper_10502947_v87_n4_p_Gasaneo2023-10-03T16:00:16Z S-model calculations for high-energy-electron-impact double ionization of helium Gasaneo, G. Mitnik, D.M. Randazzo, J.M. Ancarani, L.U. Colavecchia, F.D. Double ionization First Born approximation High-energy electron Hyperspherical coordinates Numerical implementation Projectile target interaction Single-differential cross sections Transition amplitudes Calculations Helium Impact ionization In this paper the double ionization of helium by high-energy electron impact is studied. The corresponding four-body Schrödinger equation is transformed into a set of driven equations containing successive orders in the projectile-target interaction. The transition amplitude obtained from the asymptotic limit of the first-order solution is shown to be equivalent to the familiar first Born approximation. The first-order driven equation is solved within a generalized Sturmian approach for an S-wave (e,3e) model process with high incident energy and small momentum transfer corresponding to published measurements. Two independent numerical implementations, one using spherical and the other hyperspherical coordinates, yield mutual agreement. From our ab initio solution, the transition amplitude is extracted, and single differential cross sections are calculated and could be taken as benchmark values to test other numerical methods in a previously unexplored energy domain. © 2013 American Physical Society. Fil:Gasaneo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Mitnik, D.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Colavecchia, F.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_10502947_v87_n4_p_Gasaneo
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Double ionization
First Born approximation
High-energy electron
Hyperspherical coordinates
Numerical implementation
Projectile target interaction
Single-differential cross sections
Transition amplitudes
Calculations
Helium
Impact ionization
spellingShingle Double ionization
First Born approximation
High-energy electron
Hyperspherical coordinates
Numerical implementation
Projectile target interaction
Single-differential cross sections
Transition amplitudes
Calculations
Helium
Impact ionization
Gasaneo, G.
Mitnik, D.M.
Randazzo, J.M.
Ancarani, L.U.
Colavecchia, F.D.
S-model calculations for high-energy-electron-impact double ionization of helium
topic_facet Double ionization
First Born approximation
High-energy electron
Hyperspherical coordinates
Numerical implementation
Projectile target interaction
Single-differential cross sections
Transition amplitudes
Calculations
Helium
Impact ionization
description In this paper the double ionization of helium by high-energy electron impact is studied. The corresponding four-body Schrödinger equation is transformed into a set of driven equations containing successive orders in the projectile-target interaction. The transition amplitude obtained from the asymptotic limit of the first-order solution is shown to be equivalent to the familiar first Born approximation. The first-order driven equation is solved within a generalized Sturmian approach for an S-wave (e,3e) model process with high incident energy and small momentum transfer corresponding to published measurements. Two independent numerical implementations, one using spherical and the other hyperspherical coordinates, yield mutual agreement. From our ab initio solution, the transition amplitude is extracted, and single differential cross sections are calculated and could be taken as benchmark values to test other numerical methods in a previously unexplored energy domain. © 2013 American Physical Society.
format JOUR
author Gasaneo, G.
Mitnik, D.M.
Randazzo, J.M.
Ancarani, L.U.
Colavecchia, F.D.
author_facet Gasaneo, G.
Mitnik, D.M.
Randazzo, J.M.
Ancarani, L.U.
Colavecchia, F.D.
author_sort Gasaneo, G.
title S-model calculations for high-energy-electron-impact double ionization of helium
title_short S-model calculations for high-energy-electron-impact double ionization of helium
title_full S-model calculations for high-energy-electron-impact double ionization of helium
title_fullStr S-model calculations for high-energy-electron-impact double ionization of helium
title_full_unstemmed S-model calculations for high-energy-electron-impact double ionization of helium
title_sort s-model calculations for high-energy-electron-impact double ionization of helium
url http://hdl.handle.net/20.500.12110/paper_10502947_v87_n4_p_Gasaneo
work_keys_str_mv AT gasaneog smodelcalculationsforhighenergyelectronimpactdoubleionizationofhelium
AT mitnikdm smodelcalculationsforhighenergyelectronimpactdoubleionizationofhelium
AT randazzojm smodelcalculationsforhighenergyelectronimpactdoubleionizationofhelium
AT ancaranilu smodelcalculationsforhighenergyelectronimpactdoubleionizationofhelium
AT colavecchiafd smodelcalculationsforhighenergyelectronimpactdoubleionizationofhelium
_version_ 1782024075855527936