Classicality in discrete Wigner functions
Gibbons, [Phys. Rev. A 70, 062101 (2004)] have recently defined discrete Wigner functions W to represent quantum states in a Hilbert space with finite dimension. We show that such a class of Wigner functions W can be defined so that the only pure states having non-negative W for all such functions a...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_10502947_v73_n1_p_Cormick |
Aporte de: |
Sumario: | Gibbons, [Phys. Rev. A 70, 062101 (2004)] have recently defined discrete Wigner functions W to represent quantum states in a Hilbert space with finite dimension. We show that such a class of Wigner functions W can be defined so that the only pure states having non-negative W for all such functions are stabilizer states, as conjectured by Galvão, [Phys. Rev. A 71, 042302 (2005)]. We also show that the unitaries preserving non-negativity of W for all definitions of W in the class form a subgroup of the Clifford group. This means pure states with non-negative W and their associated unitary dynamics are classical in the sense of admitting an efficient classical simulation scheme using the stabilizer formalism. © 2006 The American Physical Society. |
---|