Classicality in discrete Wigner functions

Gibbons, [Phys. Rev. A 70, 062101 (2004)] have recently defined discrete Wigner functions W to represent quantum states in a Hilbert space with finite dimension. We show that such a class of Wigner functions W can be defined so that the only pure states having non-negative W for all such functions a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cormick, C., Galvão, E.F., Gottesman, D., Paz, J.P., Pittenger, A.O.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_10502947_v73_n1_p_Cormick
Aporte de:
id todo:paper_10502947_v73_n1_p_Cormick
record_format dspace
spelling todo:paper_10502947_v73_n1_p_Cormick2023-10-03T15:59:46Z Classicality in discrete Wigner functions Cormick, C. Galvão, E.F. Gottesman, D. Paz, J.P. Pittenger, A.O. Computer simulation Quantum theory Discrete Wigner functions Hilbert space Unitary dynamics Functions Gibbons, [Phys. Rev. A 70, 062101 (2004)] have recently defined discrete Wigner functions W to represent quantum states in a Hilbert space with finite dimension. We show that such a class of Wigner functions W can be defined so that the only pure states having non-negative W for all such functions are stabilizer states, as conjectured by Galvão, [Phys. Rev. A 71, 042302 (2005)]. We also show that the unitaries preserving non-negativity of W for all definitions of W in the class form a subgroup of the Clifford group. This means pure states with non-negative W and their associated unitary dynamics are classical in the sense of admitting an efficient classical simulation scheme using the stabilizer formalism. © 2006 The American Physical Society. Fil:Cormick, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Paz, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_10502947_v73_n1_p_Cormick
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Computer simulation
Quantum theory
Discrete Wigner functions
Hilbert space
Unitary dynamics
Functions
spellingShingle Computer simulation
Quantum theory
Discrete Wigner functions
Hilbert space
Unitary dynamics
Functions
Cormick, C.
Galvão, E.F.
Gottesman, D.
Paz, J.P.
Pittenger, A.O.
Classicality in discrete Wigner functions
topic_facet Computer simulation
Quantum theory
Discrete Wigner functions
Hilbert space
Unitary dynamics
Functions
description Gibbons, [Phys. Rev. A 70, 062101 (2004)] have recently defined discrete Wigner functions W to represent quantum states in a Hilbert space with finite dimension. We show that such a class of Wigner functions W can be defined so that the only pure states having non-negative W for all such functions are stabilizer states, as conjectured by Galvão, [Phys. Rev. A 71, 042302 (2005)]. We also show that the unitaries preserving non-negativity of W for all definitions of W in the class form a subgroup of the Clifford group. This means pure states with non-negative W and their associated unitary dynamics are classical in the sense of admitting an efficient classical simulation scheme using the stabilizer formalism. © 2006 The American Physical Society.
format JOUR
author Cormick, C.
Galvão, E.F.
Gottesman, D.
Paz, J.P.
Pittenger, A.O.
author_facet Cormick, C.
Galvão, E.F.
Gottesman, D.
Paz, J.P.
Pittenger, A.O.
author_sort Cormick, C.
title Classicality in discrete Wigner functions
title_short Classicality in discrete Wigner functions
title_full Classicality in discrete Wigner functions
title_fullStr Classicality in discrete Wigner functions
title_full_unstemmed Classicality in discrete Wigner functions
title_sort classicality in discrete wigner functions
url http://hdl.handle.net/20.500.12110/paper_10502947_v73_n1_p_Cormick
work_keys_str_mv AT cormickc classicalityindiscretewignerfunctions
AT galvaoef classicalityindiscretewignerfunctions
AT gottesmand classicalityindiscretewignerfunctions
AT pazjp classicalityindiscretewignerfunctions
AT pittengerao classicalityindiscretewignerfunctions
_version_ 1807315410497830912