Antiprotozoan lead discovery by aligning dry and wet screening: Prediction, synthesis, and biological assay of novel quinoxalinones

Protozoan parasites have been one of the most significant public health problems for centuries and several human infections caused by them have massive global impact. Most of the current drugs used to treat these illnesses have been used for decades and have many limitations such as the emergence of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Martins Alho, M.A., Marrero-Ponce, Y., Barigye, S.J., Meneses-Marcel, A., Machado Tugores, Y., Montero-Torres, A., Gómez-Barrio, A., Nogal, J.J., García-Sánchez, R.N., Vega, M.C., Rolón, M., Martínez-Fernández, A.R., Escario, J.A., Pérez-Giménez, F., Garcia-Domenech, R., Rivera, N., Mondragón, R., Mondragón, M., Ibarra-Velarde, F., Lopez-Arencibia, A., Martín-Navarro, C., Lorenzo-Morales, J., Cabrera-Serra, M.G., Piñero, J., Tytgat, J., Chicharro, R., Arán, V.J.
Formato: INPR
Lenguaje:English
Materias:
Cyt
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_09680896_v_n_p_MartinsAlho
Aporte de:
id todo:paper_09680896_v_n_p_MartinsAlho
record_format dspace
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
language English
orig_language_str_mv English
topic Antimalarial
Antiprotozoan database
Antitoxoplasma
Antitrichomonas
Antitrypanosomal
Classification model
Cyt
In silico study
In vitro assay
Leishmanicide
Machine learning-based QSAR
Non-stochastic and stochastic linear indices
TOMOCOMD-CARDD software
spellingShingle Antimalarial
Antiprotozoan database
Antitoxoplasma
Antitrichomonas
Antitrypanosomal
Classification model
Cyt
In silico study
In vitro assay
Leishmanicide
Machine learning-based QSAR
Non-stochastic and stochastic linear indices
TOMOCOMD-CARDD software
Martins Alho, M.A.
Marrero-Ponce, Y.
Barigye, S.J.
Meneses-Marcel, A.
Machado Tugores, Y.
Montero-Torres, A.
Gómez-Barrio, A.
Nogal, J.J.
García-Sánchez, R.N.
Vega, M.C.
Rolón, M.
Martínez-Fernández, A.R.
Escario, J.A.
Pérez-Giménez, F.
Garcia-Domenech, R.
Rivera, N.
Mondragón, R.
Mondragón, M.
Ibarra-Velarde, F.
Lopez-Arencibia, A.
Martín-Navarro, C.
Lorenzo-Morales, J.
Cabrera-Serra, M.G.
Piñero, J.
Tytgat, J.
Chicharro, R.
Arán, V.J.
Antiprotozoan lead discovery by aligning dry and wet screening: Prediction, synthesis, and biological assay of novel quinoxalinones
topic_facet Antimalarial
Antiprotozoan database
Antitoxoplasma
Antitrichomonas
Antitrypanosomal
Classification model
Cyt
In silico study
In vitro assay
Leishmanicide
Machine learning-based QSAR
Non-stochastic and stochastic linear indices
TOMOCOMD-CARDD software
description Protozoan parasites have been one of the most significant public health problems for centuries and several human infections caused by them have massive global impact. Most of the current drugs used to treat these illnesses have been used for decades and have many limitations such as the emergence of drug resistance, severe side-effects, low-to-medium drug efficacy, administration routes, cost, etc. These drugs have been largely neglected as models for drug development because they are majorly used in countries with limited resources and as a consequence with scarce marketing possibilities. Nowadays, there is a pressing need to identify and develop new drug-based antiprotozoan therapies. In an effort to overcome this problem, the main purpose of this study is to develop a QSARs-based ensemble classifier for antiprotozoan drug-like entities from a heterogeneous compounds collection. Here, we use some of the TOMOCOMD-CARDD molecular descriptors and linear discriminant analysis (LDA) to derive individual linear classification functions in order to discriminate between antiprotozoan and non-antiprotozoan compounds as a way to enable the computational screening of virtual combinatorial datasets and/or drugs already approved. Firstly, we construct a wide-spectrum benchmark database comprising of 680 organic chemicals with great structural variability (254 of them antiprotozoan agents and 426 to drugs having other clinical uses). This series of compounds was processed by a k-means cluster analysis in order to design training and predicting sets. In total, seven discriminant functions were obtained, by using the whole set of atom-based linear indices. All the LDA-based QSAR models show accuracies above 85% in the training set and values of Matthews correlation coefficients ( C ) vary from 0.70 to 0.86. The external validation set shows rather-good global classifications of around 80% (92.05% for best equation). Later, we developed a multi-agent QSAR classification system, in which the individual QSAR outputs are the inputs of the aforementioned fusion approach. Finally, the fusion model was used for the identification of a novel generation of lead-like antiprotozoan compounds by using ligand-based virtual screening of 'available' small molecules (with synthetic feasibility) in our 'in-house' library. A new molecular subsystem (quinoxalinones) was then theoretically selected as a promising lead series, and its derivatives subsequently synthesized, structurally characterized, and experimentally assayed by using in vitro screening that took into consideration a battery of five parasite-based assays. The chemicals 11(12) and 16 are the most active (hits) against apicomplexa (sporozoa) and mastigophora (flagellata) subphylum parasites, respectively. Both compounds depicted good activity in every protozoan in vitro panel and they did not show unspecific cytotoxicity on the host cells. The described technical framework seems to be a promising QSAR-classifier tool for the molecular discovery and development of novel classes of broad-antiprotozoan-spectrum drugs, which may meet the dual challenges posed by drug-resistant parasites and the rapid progression of protozoan illnesses. © 2014 Elsevier Ltd. All rights reserved.
format INPR
author Martins Alho, M.A.
Marrero-Ponce, Y.
Barigye, S.J.
Meneses-Marcel, A.
Machado Tugores, Y.
Montero-Torres, A.
Gómez-Barrio, A.
Nogal, J.J.
García-Sánchez, R.N.
Vega, M.C.
Rolón, M.
Martínez-Fernández, A.R.
Escario, J.A.
Pérez-Giménez, F.
Garcia-Domenech, R.
Rivera, N.
Mondragón, R.
Mondragón, M.
Ibarra-Velarde, F.
Lopez-Arencibia, A.
Martín-Navarro, C.
Lorenzo-Morales, J.
Cabrera-Serra, M.G.
Piñero, J.
Tytgat, J.
Chicharro, R.
Arán, V.J.
author_facet Martins Alho, M.A.
Marrero-Ponce, Y.
Barigye, S.J.
Meneses-Marcel, A.
Machado Tugores, Y.
Montero-Torres, A.
Gómez-Barrio, A.
Nogal, J.J.
García-Sánchez, R.N.
Vega, M.C.
Rolón, M.
Martínez-Fernández, A.R.
Escario, J.A.
Pérez-Giménez, F.
Garcia-Domenech, R.
Rivera, N.
Mondragón, R.
Mondragón, M.
Ibarra-Velarde, F.
Lopez-Arencibia, A.
Martín-Navarro, C.
Lorenzo-Morales, J.
Cabrera-Serra, M.G.
Piñero, J.
Tytgat, J.
Chicharro, R.
Arán, V.J.
author_sort Martins Alho, M.A.
title Antiprotozoan lead discovery by aligning dry and wet screening: Prediction, synthesis, and biological assay of novel quinoxalinones
title_short Antiprotozoan lead discovery by aligning dry and wet screening: Prediction, synthesis, and biological assay of novel quinoxalinones
title_full Antiprotozoan lead discovery by aligning dry and wet screening: Prediction, synthesis, and biological assay of novel quinoxalinones
title_fullStr Antiprotozoan lead discovery by aligning dry and wet screening: Prediction, synthesis, and biological assay of novel quinoxalinones
title_full_unstemmed Antiprotozoan lead discovery by aligning dry and wet screening: Prediction, synthesis, and biological assay of novel quinoxalinones
title_sort antiprotozoan lead discovery by aligning dry and wet screening: prediction, synthesis, and biological assay of novel quinoxalinones
url http://hdl.handle.net/20.500.12110/paper_09680896_v_n_p_MartinsAlho
work_keys_str_mv AT martinsalhoma antiprotozoanleaddiscoverybyaligningdryandwetscreeningpredictionsynthesisandbiologicalassayofnovelquinoxalinones
AT marreroponcey antiprotozoanleaddiscoverybyaligningdryandwetscreeningpredictionsynthesisandbiologicalassayofnovelquinoxalinones
AT barigyesj antiprotozoanleaddiscoverybyaligningdryandwetscreeningpredictionsynthesisandbiologicalassayofnovelquinoxalinones
AT menesesmarcela antiprotozoanleaddiscoverybyaligningdryandwetscreeningpredictionsynthesisandbiologicalassayofnovelquinoxalinones
AT machadotugoresy antiprotozoanleaddiscoverybyaligningdryandwetscreeningpredictionsynthesisandbiologicalassayofnovelquinoxalinones
AT monterotorresa antiprotozoanleaddiscoverybyaligningdryandwetscreeningpredictionsynthesisandbiologicalassayofnovelquinoxalinones
AT gomezbarrioa antiprotozoanleaddiscoverybyaligningdryandwetscreeningpredictionsynthesisandbiologicalassayofnovelquinoxalinones
AT nogaljj antiprotozoanleaddiscoverybyaligningdryandwetscreeningpredictionsynthesisandbiologicalassayofnovelquinoxalinones
AT garciasanchezrn antiprotozoanleaddiscoverybyaligningdryandwetscreeningpredictionsynthesisandbiologicalassayofnovelquinoxalinones
AT vegamc antiprotozoanleaddiscoverybyaligningdryandwetscreeningpredictionsynthesisandbiologicalassayofnovelquinoxalinones
AT rolonm antiprotozoanleaddiscoverybyaligningdryandwetscreeningpredictionsynthesisandbiologicalassayofnovelquinoxalinones
AT martinezfernandezar antiprotozoanleaddiscoverybyaligningdryandwetscreeningpredictionsynthesisandbiologicalassayofnovelquinoxalinones
AT escarioja antiprotozoanleaddiscoverybyaligningdryandwetscreeningpredictionsynthesisandbiologicalassayofnovelquinoxalinones
AT perezgimenezf antiprotozoanleaddiscoverybyaligningdryandwetscreeningpredictionsynthesisandbiologicalassayofnovelquinoxalinones
AT garciadomenechr antiprotozoanleaddiscoverybyaligningdryandwetscreeningpredictionsynthesisandbiologicalassayofnovelquinoxalinones
AT riveran antiprotozoanleaddiscoverybyaligningdryandwetscreeningpredictionsynthesisandbiologicalassayofnovelquinoxalinones
AT mondragonr antiprotozoanleaddiscoverybyaligningdryandwetscreeningpredictionsynthesisandbiologicalassayofnovelquinoxalinones
AT mondragonm antiprotozoanleaddiscoverybyaligningdryandwetscreeningpredictionsynthesisandbiologicalassayofnovelquinoxalinones
AT ibarravelardef antiprotozoanleaddiscoverybyaligningdryandwetscreeningpredictionsynthesisandbiologicalassayofnovelquinoxalinones
AT lopezarencibiaa antiprotozoanleaddiscoverybyaligningdryandwetscreeningpredictionsynthesisandbiologicalassayofnovelquinoxalinones
AT martinnavarroc antiprotozoanleaddiscoverybyaligningdryandwetscreeningpredictionsynthesisandbiologicalassayofnovelquinoxalinones
AT lorenzomoralesj antiprotozoanleaddiscoverybyaligningdryandwetscreeningpredictionsynthesisandbiologicalassayofnovelquinoxalinones
AT cabreraserramg antiprotozoanleaddiscoverybyaligningdryandwetscreeningpredictionsynthesisandbiologicalassayofnovelquinoxalinones
AT pineroj antiprotozoanleaddiscoverybyaligningdryandwetscreeningpredictionsynthesisandbiologicalassayofnovelquinoxalinones
AT tytgatj antiprotozoanleaddiscoverybyaligningdryandwetscreeningpredictionsynthesisandbiologicalassayofnovelquinoxalinones
AT chicharror antiprotozoanleaddiscoverybyaligningdryandwetscreeningpredictionsynthesisandbiologicalassayofnovelquinoxalinones
AT aranvj antiprotozoanleaddiscoverybyaligningdryandwetscreeningpredictionsynthesisandbiologicalassayofnovelquinoxalinones
_version_ 1807318126503657472
spelling todo:paper_09680896_v_n_p_MartinsAlho2023-10-03T15:55:20Z Antiprotozoan lead discovery by aligning dry and wet screening: Prediction, synthesis, and biological assay of novel quinoxalinones Martins Alho, M.A. Marrero-Ponce, Y. Barigye, S.J. Meneses-Marcel, A. Machado Tugores, Y. Montero-Torres, A. Gómez-Barrio, A. Nogal, J.J. García-Sánchez, R.N. Vega, M.C. Rolón, M. Martínez-Fernández, A.R. Escario, J.A. Pérez-Giménez, F. Garcia-Domenech, R. Rivera, N. Mondragón, R. Mondragón, M. Ibarra-Velarde, F. Lopez-Arencibia, A. Martín-Navarro, C. Lorenzo-Morales, J. Cabrera-Serra, M.G. Piñero, J. Tytgat, J. Chicharro, R. Arán, V.J. Antimalarial Antiprotozoan database Antitoxoplasma Antitrichomonas Antitrypanosomal Classification model Cyt In silico study In vitro assay Leishmanicide Machine learning-based QSAR Non-stochastic and stochastic linear indices TOMOCOMD-CARDD software Protozoan parasites have been one of the most significant public health problems for centuries and several human infections caused by them have massive global impact. Most of the current drugs used to treat these illnesses have been used for decades and have many limitations such as the emergence of drug resistance, severe side-effects, low-to-medium drug efficacy, administration routes, cost, etc. These drugs have been largely neglected as models for drug development because they are majorly used in countries with limited resources and as a consequence with scarce marketing possibilities. Nowadays, there is a pressing need to identify and develop new drug-based antiprotozoan therapies. In an effort to overcome this problem, the main purpose of this study is to develop a QSARs-based ensemble classifier for antiprotozoan drug-like entities from a heterogeneous compounds collection. Here, we use some of the TOMOCOMD-CARDD molecular descriptors and linear discriminant analysis (LDA) to derive individual linear classification functions in order to discriminate between antiprotozoan and non-antiprotozoan compounds as a way to enable the computational screening of virtual combinatorial datasets and/or drugs already approved. Firstly, we construct a wide-spectrum benchmark database comprising of 680 organic chemicals with great structural variability (254 of them antiprotozoan agents and 426 to drugs having other clinical uses). This series of compounds was processed by a k-means cluster analysis in order to design training and predicting sets. In total, seven discriminant functions were obtained, by using the whole set of atom-based linear indices. All the LDA-based QSAR models show accuracies above 85% in the training set and values of Matthews correlation coefficients ( C ) vary from 0.70 to 0.86. The external validation set shows rather-good global classifications of around 80% (92.05% for best equation). Later, we developed a multi-agent QSAR classification system, in which the individual QSAR outputs are the inputs of the aforementioned fusion approach. Finally, the fusion model was used for the identification of a novel generation of lead-like antiprotozoan compounds by using ligand-based virtual screening of 'available' small molecules (with synthetic feasibility) in our 'in-house' library. A new molecular subsystem (quinoxalinones) was then theoretically selected as a promising lead series, and its derivatives subsequently synthesized, structurally characterized, and experimentally assayed by using in vitro screening that took into consideration a battery of five parasite-based assays. The chemicals 11(12) and 16 are the most active (hits) against apicomplexa (sporozoa) and mastigophora (flagellata) subphylum parasites, respectively. Both compounds depicted good activity in every protozoan in vitro panel and they did not show unspecific cytotoxicity on the host cells. The described technical framework seems to be a promising QSAR-classifier tool for the molecular discovery and development of novel classes of broad-antiprotozoan-spectrum drugs, which may meet the dual challenges posed by drug-resistant parasites and the rapid progression of protozoan illnesses. © 2014 Elsevier Ltd. All rights reserved. Fil:Martins Alho, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. INPR English info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_09680896_v_n_p_MartinsAlho