Large solutions to the p-Laplacian for large p

In this work we consider the behaviour for large values of p of the unique positive weak solution u p to Δ p u = u q in Ω, u = +∞ on partial Ω, where q > p - 1. We take q = q(p) and analyze the limit of u p as p → ∞. We find that when q(p)/p → Q the behaviour strongly depends on Q. If 1 &...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: García-Melián, J., Rossi, J.D., De Lis, J.C.S.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_09442669_v31_n2_p187_GarciaMelian
Aporte de:
id todo:paper_09442669_v31_n2_p187_GarciaMelian
record_format dspace
spelling todo:paper_09442669_v31_n2_p187_GarciaMelian2023-10-03T15:49:11Z Large solutions to the p-Laplacian for large p García-Melián, J. Rossi, J.D. De Lis, J.C.S. In this work we consider the behaviour for large values of p of the unique positive weak solution u p to Δ p u = u q in Ω, u = +∞ on partial Ω, where q > p - 1. We take q = q(p) and analyze the limit of u p as p → ∞. We find that when q(p)/p → Q the behaviour strongly depends on Q. If 1 < Q < ∞ then solutions converge uniformly in compacts to a viscosity solution of max{-Δ{u}, -|∇ u| +uQ \\} = 0 with u = +∞ on Ω. If Q = 1 then solutions go to ∞ in the whole Ω and when Q = ∞ solutions converge to 1 uniformly in compact subsets of Ω, hence the boundary blow-up is lost in the limit. © 2007 Springer-Verlag. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_09442669_v31_n2_p187_GarciaMelian
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description In this work we consider the behaviour for large values of p of the unique positive weak solution u p to Δ p u = u q in Ω, u = +∞ on partial Ω, where q > p - 1. We take q = q(p) and analyze the limit of u p as p → ∞. We find that when q(p)/p → Q the behaviour strongly depends on Q. If 1 < Q < ∞ then solutions converge uniformly in compacts to a viscosity solution of max{-Δ{u}, -|∇ u| +uQ \\} = 0 with u = +∞ on Ω. If Q = 1 then solutions go to ∞ in the whole Ω and when Q = ∞ solutions converge to 1 uniformly in compact subsets of Ω, hence the boundary blow-up is lost in the limit. © 2007 Springer-Verlag.
format JOUR
author García-Melián, J.
Rossi, J.D.
De Lis, J.C.S.
spellingShingle García-Melián, J.
Rossi, J.D.
De Lis, J.C.S.
Large solutions to the p-Laplacian for large p
author_facet García-Melián, J.
Rossi, J.D.
De Lis, J.C.S.
author_sort García-Melián, J.
title Large solutions to the p-Laplacian for large p
title_short Large solutions to the p-Laplacian for large p
title_full Large solutions to the p-Laplacian for large p
title_fullStr Large solutions to the p-Laplacian for large p
title_full_unstemmed Large solutions to the p-Laplacian for large p
title_sort large solutions to the p-laplacian for large p
url http://hdl.handle.net/20.500.12110/paper_09442669_v31_n2_p187_GarciaMelian
work_keys_str_mv AT garciamelianj largesolutionstotheplaplacianforlargep
AT rossijd largesolutionstotheplaplacianforlargep
AT delisjcs largesolutionstotheplaplacianforlargep
_version_ 1807322768563240960