Quantifier elimination for elementary geometry and elementary affine geometry

We introduce new first-order languages for the elementary n-dimensional geometry and elementary n-dimensional affine geometry (n ≥ 2), based on extending FO(β≡) and FO(β), respectively, with new function symbols. Here, β stands for the betweenness relation and ≡ for the congruence relation. We show...

Descripción completa

Detalles Bibliográficos
Autores principales: Grimson, R., Kuijpers, B., Othman, W.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_09425616_v58_n6_p399_Grimson
Aporte de:
id todo:paper_09425616_v58_n6_p399_Grimson
record_format dspace
spelling todo:paper_09425616_v58_n6_p399_Grimson2023-10-03T15:49:01Z Quantifier elimination for elementary geometry and elementary affine geometry Grimson, R. Kuijpers, B. Othman, W. Affine geometry Euclidean geometry Geometric constructions Quantifier elimination Semi-algebraic geometry We introduce new first-order languages for the elementary n-dimensional geometry and elementary n-dimensional affine geometry (n ≥ 2), based on extending FO(β≡) and FO(β), respectively, with new function symbols. Here, β stands for the betweenness relation and ≡ for the congruence relation. We show that the associated theories admit effective quantifier elimination. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_09425616_v58_n6_p399_Grimson
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Affine geometry
Euclidean geometry
Geometric constructions
Quantifier elimination
Semi-algebraic geometry
spellingShingle Affine geometry
Euclidean geometry
Geometric constructions
Quantifier elimination
Semi-algebraic geometry
Grimson, R.
Kuijpers, B.
Othman, W.
Quantifier elimination for elementary geometry and elementary affine geometry
topic_facet Affine geometry
Euclidean geometry
Geometric constructions
Quantifier elimination
Semi-algebraic geometry
description We introduce new first-order languages for the elementary n-dimensional geometry and elementary n-dimensional affine geometry (n ≥ 2), based on extending FO(β≡) and FO(β), respectively, with new function symbols. Here, β stands for the betweenness relation and ≡ for the congruence relation. We show that the associated theories admit effective quantifier elimination. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
format JOUR
author Grimson, R.
Kuijpers, B.
Othman, W.
author_facet Grimson, R.
Kuijpers, B.
Othman, W.
author_sort Grimson, R.
title Quantifier elimination for elementary geometry and elementary affine geometry
title_short Quantifier elimination for elementary geometry and elementary affine geometry
title_full Quantifier elimination for elementary geometry and elementary affine geometry
title_fullStr Quantifier elimination for elementary geometry and elementary affine geometry
title_full_unstemmed Quantifier elimination for elementary geometry and elementary affine geometry
title_sort quantifier elimination for elementary geometry and elementary affine geometry
url http://hdl.handle.net/20.500.12110/paper_09425616_v58_n6_p399_Grimson
work_keys_str_mv AT grimsonr quantifiereliminationforelementarygeometryandelementaryaffinegeometry
AT kuijpersb quantifiereliminationforelementarygeometryandelementaryaffinegeometry
AT othmanw quantifiereliminationforelementarygeometryandelementaryaffinegeometry
_version_ 1807319178797907968