Quantifier elimination for elementary geometry and elementary affine geometry
We introduce new first-order languages for the elementary n-dimensional geometry and elementary n-dimensional affine geometry (n ≥ 2), based on extending FO(β≡) and FO(β), respectively, with new function symbols. Here, β stands for the betweenness relation and ≡ for the congruence relation. We show...
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_09425616_v58_n6_p399_Grimson |
Aporte de: |
id |
todo:paper_09425616_v58_n6_p399_Grimson |
---|---|
record_format |
dspace |
spelling |
todo:paper_09425616_v58_n6_p399_Grimson2023-10-03T15:49:01Z Quantifier elimination for elementary geometry and elementary affine geometry Grimson, R. Kuijpers, B. Othman, W. Affine geometry Euclidean geometry Geometric constructions Quantifier elimination Semi-algebraic geometry We introduce new first-order languages for the elementary n-dimensional geometry and elementary n-dimensional affine geometry (n ≥ 2), based on extending FO(β≡) and FO(β), respectively, with new function symbols. Here, β stands for the betweenness relation and ≡ for the congruence relation. We show that the associated theories admit effective quantifier elimination. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_09425616_v58_n6_p399_Grimson |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Affine geometry Euclidean geometry Geometric constructions Quantifier elimination Semi-algebraic geometry |
spellingShingle |
Affine geometry Euclidean geometry Geometric constructions Quantifier elimination Semi-algebraic geometry Grimson, R. Kuijpers, B. Othman, W. Quantifier elimination for elementary geometry and elementary affine geometry |
topic_facet |
Affine geometry Euclidean geometry Geometric constructions Quantifier elimination Semi-algebraic geometry |
description |
We introduce new first-order languages for the elementary n-dimensional geometry and elementary n-dimensional affine geometry (n ≥ 2), based on extending FO(β≡) and FO(β), respectively, with new function symbols. Here, β stands for the betweenness relation and ≡ for the congruence relation. We show that the associated theories admit effective quantifier elimination. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
format |
JOUR |
author |
Grimson, R. Kuijpers, B. Othman, W. |
author_facet |
Grimson, R. Kuijpers, B. Othman, W. |
author_sort |
Grimson, R. |
title |
Quantifier elimination for elementary geometry and elementary affine geometry |
title_short |
Quantifier elimination for elementary geometry and elementary affine geometry |
title_full |
Quantifier elimination for elementary geometry and elementary affine geometry |
title_fullStr |
Quantifier elimination for elementary geometry and elementary affine geometry |
title_full_unstemmed |
Quantifier elimination for elementary geometry and elementary affine geometry |
title_sort |
quantifier elimination for elementary geometry and elementary affine geometry |
url |
http://hdl.handle.net/20.500.12110/paper_09425616_v58_n6_p399_Grimson |
work_keys_str_mv |
AT grimsonr quantifiereliminationforelementarygeometryandelementaryaffinegeometry AT kuijpersb quantifiereliminationforelementarygeometryandelementaryaffinegeometry AT othmanw quantifiereliminationforelementarygeometryandelementaryaffinegeometry |
_version_ |
1807319178797907968 |