On the Yamabe constants of S2×R3 and S3×R2
We compare the isoperimetric profiles of S2×R3 and of S3×R2 with that of a round 5-sphere (of appropriate radius). Then we use this comparison to obtain lower bounds for the Yamabe constants of S2×R3 and S3×R2. Explicitly we show that Y(S3×R2,[g0 3+dx 2])>(3/4)Y(S5) and Y(S2×R3,[g0 2+dx 2])&a...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_09262245_v31_n2_p308_Petean |
Aporte de: |
Sumario: | We compare the isoperimetric profiles of S2×R3 and of S3×R2 with that of a round 5-sphere (of appropriate radius). Then we use this comparison to obtain lower bounds for the Yamabe constants of S2×R3 and S3×R2. Explicitly we show that Y(S3×R2,[g0 3+dx 2])>(3/4)Y(S5) and Y(S2×R3,[g0 2+dx 2])>0.63Y(S5). We also obtain explicit lower bounds in higher dimensions and for products of Euclidean space with a closed manifold of positive Ricci curvature. The techniques are a more general version of those used by the same authors in Petean and Ruiz (2011) [15] and the results are a complement to the work developed by B. Ammann, M. Dahl and E. Humbert to obtain explicit gap theorems for the Yamabe invariants in low dimensions. © 2013 Elsevier B.V. |
---|