Models for growth of heterogeneous sandpiles via Mosco convergence

In this paper we study the asymptotic behavior of several classes of power-law functionals involving variable exponents p n(·) →∞, via Mosco convergence. In the particular case p n(·)=np(·), we show that the sequence {H n} of functionals H n:L 2(R N)→[0,+∞] given by H n(u)=∫R Nλ(x) n/np(x) |∇u(x)| n...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bocea, M., Mihǎilescu, M., Pérez-Llanos, M.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_09217134_v78_n1-2_p11_Bocea
Aporte de:
id todo:paper_09217134_v78_n1-2_p11_Bocea
record_format dspace
spelling todo:paper_09217134_v78_n1-2_p11_Bocea2023-10-03T15:45:40Z Models for growth of heterogeneous sandpiles via Mosco convergence Bocea, M. Mihǎilescu, M. Pérez-Llanos, M. Bocea, M. Mosco convergence power-law functionals sandpile models variable exponent spaces Asymptotic behaviors Characteristic functions Functionals Mosco-convergence Power-law Sand-pile models Variable exponents Asymptotic analysis Sand In this paper we study the asymptotic behavior of several classes of power-law functionals involving variable exponents p n(·) →∞, via Mosco convergence. In the particular case p n(·)=np(·), we show that the sequence {H n} of functionals H n:L 2(R N)→[0,+∞] given by H n(u)=∫R Nλ(x) n/np(x) |∇u(x)| np(x)dx if u∈L 2(R N) ∩W 1,np(·)(R N), +∞ otherwise, converges in the sense of Mosco to a functional which vanishes on the set u∈L 2(R N): λ(x)|∇u| p(x)≤ 1 a.e. x∈R N and is infinite in its complement. We also provide an example of a sequence of functionals whose Mosco limit cannot be described in terms of the characteristic function of a subset of L 2(R N). As an application of our results we obtain a model for the growth of a sandpile in which the allowed slope of the sand depends explicitly on the position in the sample. © 2012 - IOS Press and the authors. All rights reserved. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_09217134_v78_n1-2_p11_Bocea
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Mosco convergence
power-law functionals
sandpile models
variable exponent spaces
Asymptotic behaviors
Characteristic functions
Functionals
Mosco-convergence
Power-law
Sand-pile models
Variable exponents
Asymptotic analysis
Sand
spellingShingle Mosco convergence
power-law functionals
sandpile models
variable exponent spaces
Asymptotic behaviors
Characteristic functions
Functionals
Mosco-convergence
Power-law
Sand-pile models
Variable exponents
Asymptotic analysis
Sand
Bocea, M.
Mihǎilescu, M.
Pérez-Llanos, M.
Bocea, M.
Models for growth of heterogeneous sandpiles via Mosco convergence
topic_facet Mosco convergence
power-law functionals
sandpile models
variable exponent spaces
Asymptotic behaviors
Characteristic functions
Functionals
Mosco-convergence
Power-law
Sand-pile models
Variable exponents
Asymptotic analysis
Sand
description In this paper we study the asymptotic behavior of several classes of power-law functionals involving variable exponents p n(·) →∞, via Mosco convergence. In the particular case p n(·)=np(·), we show that the sequence {H n} of functionals H n:L 2(R N)→[0,+∞] given by H n(u)=∫R Nλ(x) n/np(x) |∇u(x)| np(x)dx if u∈L 2(R N) ∩W 1,np(·)(R N), +∞ otherwise, converges in the sense of Mosco to a functional which vanishes on the set u∈L 2(R N): λ(x)|∇u| p(x)≤ 1 a.e. x∈R N and is infinite in its complement. We also provide an example of a sequence of functionals whose Mosco limit cannot be described in terms of the characteristic function of a subset of L 2(R N). As an application of our results we obtain a model for the growth of a sandpile in which the allowed slope of the sand depends explicitly on the position in the sample. © 2012 - IOS Press and the authors. All rights reserved.
format JOUR
author Bocea, M.
Mihǎilescu, M.
Pérez-Llanos, M.
Bocea, M.
author_facet Bocea, M.
Mihǎilescu, M.
Pérez-Llanos, M.
Bocea, M.
author_sort Bocea, M.
title Models for growth of heterogeneous sandpiles via Mosco convergence
title_short Models for growth of heterogeneous sandpiles via Mosco convergence
title_full Models for growth of heterogeneous sandpiles via Mosco convergence
title_fullStr Models for growth of heterogeneous sandpiles via Mosco convergence
title_full_unstemmed Models for growth of heterogeneous sandpiles via Mosco convergence
title_sort models for growth of heterogeneous sandpiles via mosco convergence
url http://hdl.handle.net/20.500.12110/paper_09217134_v78_n1-2_p11_Bocea
work_keys_str_mv AT boceam modelsforgrowthofheterogeneoussandpilesviamoscoconvergence
AT mihailescum modelsforgrowthofheterogeneoussandpilesviamoscoconvergence
AT perezllanosm modelsforgrowthofheterogeneoussandpilesviamoscoconvergence
AT boceam modelsforgrowthofheterogeneoussandpilesviamoscoconvergence
_version_ 1807317501629956096