Monotone discrete Newton iterations and elimination

The improvement in convergence by means of accurate functional elimination in the context of the monotone Newton theorem is further analyzed and extended to discrete approximations of the Newton method. © 1995.

Guardado en:
Detalles Bibliográficos
Autor principal: Milaszewicz, J.P.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_08981221_v30_n1_p79_Milaszewicz
Aporte de:
id todo:paper_08981221_v30_n1_p79_Milaszewicz
record_format dspace
spelling todo:paper_08981221_v30_n1_p79_Milaszewicz2023-10-03T15:43:58Z Monotone discrete Newton iterations and elimination Milaszewicz, J.P. Discretized Newton method Functional elimination Nonlinear systems Order convex functions Approximation theory Boundary value problems Convergence of numerical methods Differentiation (calculus) Function evaluation Iterative methods Mathematical models Matrix algebra Theorem proving Discretized Newton method Functional elimination Jacobian matrix Monotone discrete Newton iterations Monotone sequences Order convex functions Nonlinear equations The improvement in convergence by means of accurate functional elimination in the context of the monotone Newton theorem is further analyzed and extended to discrete approximations of the Newton method. © 1995. Fil:Milaszewicz, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_08981221_v30_n1_p79_Milaszewicz
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Discretized Newton method
Functional elimination
Nonlinear systems
Order convex functions
Approximation theory
Boundary value problems
Convergence of numerical methods
Differentiation (calculus)
Function evaluation
Iterative methods
Mathematical models
Matrix algebra
Theorem proving
Discretized Newton method
Functional elimination
Jacobian matrix
Monotone discrete Newton iterations
Monotone sequences
Order convex functions
Nonlinear equations
spellingShingle Discretized Newton method
Functional elimination
Nonlinear systems
Order convex functions
Approximation theory
Boundary value problems
Convergence of numerical methods
Differentiation (calculus)
Function evaluation
Iterative methods
Mathematical models
Matrix algebra
Theorem proving
Discretized Newton method
Functional elimination
Jacobian matrix
Monotone discrete Newton iterations
Monotone sequences
Order convex functions
Nonlinear equations
Milaszewicz, J.P.
Monotone discrete Newton iterations and elimination
topic_facet Discretized Newton method
Functional elimination
Nonlinear systems
Order convex functions
Approximation theory
Boundary value problems
Convergence of numerical methods
Differentiation (calculus)
Function evaluation
Iterative methods
Mathematical models
Matrix algebra
Theorem proving
Discretized Newton method
Functional elimination
Jacobian matrix
Monotone discrete Newton iterations
Monotone sequences
Order convex functions
Nonlinear equations
description The improvement in convergence by means of accurate functional elimination in the context of the monotone Newton theorem is further analyzed and extended to discrete approximations of the Newton method. © 1995.
format JOUR
author Milaszewicz, J.P.
author_facet Milaszewicz, J.P.
author_sort Milaszewicz, J.P.
title Monotone discrete Newton iterations and elimination
title_short Monotone discrete Newton iterations and elimination
title_full Monotone discrete Newton iterations and elimination
title_fullStr Monotone discrete Newton iterations and elimination
title_full_unstemmed Monotone discrete Newton iterations and elimination
title_sort monotone discrete newton iterations and elimination
url http://hdl.handle.net/20.500.12110/paper_08981221_v30_n1_p79_Milaszewicz
work_keys_str_mv AT milaszewiczjp monotonediscretenewtoniterationsandelimination
_version_ 1807314782292803584