Nonsimultaneous quenching

We study the possibility of nonsimultaneous quenching for positive solutions of a coupled system of two semilinear heat equations, ut = uxx - v-p, vt = vxx - u-q, p, q > 0, with homogeneous Neumann boundary conditions and positive initial data. Under some assumptions on the initial data, we p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: De Pablo, A., Quirós, F., Rossi, J.D.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_08939659_v15_n3_p265_DePablo
Aporte de:
id todo:paper_08939659_v15_n3_p265_DePablo
record_format dspace
spelling todo:paper_08939659_v15_n3_p265_DePablo2023-10-03T15:41:51Z Nonsimultaneous quenching De Pablo, A. Quirós, F. Rossi, J.D. Quenching Semilinear parabolic system We study the possibility of nonsimultaneous quenching for positive solutions of a coupled system of two semilinear heat equations, ut = uxx - v-p, vt = vxx - u-q, p, q > 0, with homogeneous Neumann boundary conditions and positive initial data. Under some assumptions on the initial data, we prove that if p,q ≥ 1, then quenching is always simultaneous, if p < 1 or q < 1, then there exists a wide class of initial data with nonsimultaneous quenching, and finally, if p < 1 ≤ q or q < 1 ≤ p, then quenching is always nonsimultaneous. We also give the quenching rates in all cases. © 2002 Elsevier Science Ltd. All rights reserved. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_08939659_v15_n3_p265_DePablo
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Quenching
Semilinear parabolic system
spellingShingle Quenching
Semilinear parabolic system
De Pablo, A.
Quirós, F.
Rossi, J.D.
Nonsimultaneous quenching
topic_facet Quenching
Semilinear parabolic system
description We study the possibility of nonsimultaneous quenching for positive solutions of a coupled system of two semilinear heat equations, ut = uxx - v-p, vt = vxx - u-q, p, q > 0, with homogeneous Neumann boundary conditions and positive initial data. Under some assumptions on the initial data, we prove that if p,q ≥ 1, then quenching is always simultaneous, if p < 1 or q < 1, then there exists a wide class of initial data with nonsimultaneous quenching, and finally, if p < 1 ≤ q or q < 1 ≤ p, then quenching is always nonsimultaneous. We also give the quenching rates in all cases. © 2002 Elsevier Science Ltd. All rights reserved.
format JOUR
author De Pablo, A.
Quirós, F.
Rossi, J.D.
author_facet De Pablo, A.
Quirós, F.
Rossi, J.D.
author_sort De Pablo, A.
title Nonsimultaneous quenching
title_short Nonsimultaneous quenching
title_full Nonsimultaneous quenching
title_fullStr Nonsimultaneous quenching
title_full_unstemmed Nonsimultaneous quenching
title_sort nonsimultaneous quenching
url http://hdl.handle.net/20.500.12110/paper_08939659_v15_n3_p265_DePablo
work_keys_str_mv AT depabloa nonsimultaneousquenching
AT quirosf nonsimultaneousquenching
AT rossijd nonsimultaneousquenching
_version_ 1807324305737908224