Two distinct heme distal site states define Cerebratulus lacteus mini-hemoglobin oxygen affinity

The nerve tissue hemoglobin of Cerebratulus lacteus (CerHb) is the smallest naturally occurring known hemoglobin. Stabilization of the diatomic bound, species (e.g., O2) is achieved through a network of hydrogen bonds based on three key residues TyrB10, GlnE7, and ThrE11. The first two residues are...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Martí, M.A., Bikiel, D.E., Crespo, A., Nardini, M., Bolognesi, M., Estrin, D.A.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_08873585_v62_n3_p641_Marti
Aporte de:
id todo:paper_08873585_v62_n3_p641_Marti
record_format dspace
spelling todo:paper_08873585_v62_n3_p641_Marti2023-10-03T15:40:50Z Two distinct heme distal site states define Cerebratulus lacteus mini-hemoglobin oxygen affinity Martí, M.A. Bikiel, D.E. Crespo, A. Nardini, M. Bolognesi, M. Estrin, D.A. Computer simulation Density functional theory Hemoglobin Molecular dynamics Myoglobin Neural hemoglobin Quantum mechanical-molecular mechanical (QM-MM) carbon monoxide heme hemoglobin oxygen Aplysia article Cerebratulus lacteus computer simulation density functional theory dissociation constant energy transfer enzyme active site geometry hydrogen bond molecular dynamics nervous tissue nonhuman oxygen affinity priority journal quantum mechanics site directed mutagenesis Amino Acid Substitution Animals Annelida Binding Sites Heme Hemoglobins Humans Hydrogen Bonding Kinetics Models, Molecular Mutagenesis, Site-Directed Oxyhemoglobins Protein Structure, Secondary Recombinant Proteins Aplysia Cerebratulus lacteus The nerve tissue hemoglobin of Cerebratulus lacteus (CerHb) is the smallest naturally occurring known hemoglobin. Stabilization of the diatomic bound, species (e.g., O2) is achieved through a network of hydrogen bonds based on three key residues TyrB10, GlnE7, and ThrE11. The first two residues are typically associated in hemoglobins with enhanced O2 affinity, related to hydrogen bond stabilization of the heme-bound O2 resulting in a decrease of the ligand dissociation rates. In contrast to the above observations, the affinity of CerHb for O2 is only moderate, and the rate of O2 dissociation is unexpectedly high. To gain insight on the diverse molecular mechanisms controlling ligand affinities, we have analyzed w.t. CerHb and its ThrE11→Val mutant by means of joint molecular dynamics and quantum mechanics simulation techniques, complementing recent site-directed mutagenesis experiments. Our results suggest that the observed O2 dissociation rates can only be explained through a dynamic equilibrium between high and low affinity states of the w.t. CerHb heme distal site. © 2005 Wiley-Liss, Inc. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_08873585_v62_n3_p641_Marti
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Computer simulation
Density functional theory
Hemoglobin
Molecular dynamics
Myoglobin
Neural hemoglobin
Quantum mechanical-molecular mechanical (QM-MM)
carbon monoxide
heme
hemoglobin
oxygen
Aplysia
article
Cerebratulus lacteus
computer simulation
density functional theory
dissociation constant
energy transfer
enzyme active site
geometry
hydrogen bond
molecular dynamics
nervous tissue
nonhuman
oxygen affinity
priority journal
quantum mechanics
site directed mutagenesis
Amino Acid Substitution
Animals
Annelida
Binding Sites
Heme
Hemoglobins
Humans
Hydrogen Bonding
Kinetics
Models, Molecular
Mutagenesis, Site-Directed
Oxyhemoglobins
Protein Structure, Secondary
Recombinant Proteins
Aplysia
Cerebratulus lacteus
spellingShingle Computer simulation
Density functional theory
Hemoglobin
Molecular dynamics
Myoglobin
Neural hemoglobin
Quantum mechanical-molecular mechanical (QM-MM)
carbon monoxide
heme
hemoglobin
oxygen
Aplysia
article
Cerebratulus lacteus
computer simulation
density functional theory
dissociation constant
energy transfer
enzyme active site
geometry
hydrogen bond
molecular dynamics
nervous tissue
nonhuman
oxygen affinity
priority journal
quantum mechanics
site directed mutagenesis
Amino Acid Substitution
Animals
Annelida
Binding Sites
Heme
Hemoglobins
Humans
Hydrogen Bonding
Kinetics
Models, Molecular
Mutagenesis, Site-Directed
Oxyhemoglobins
Protein Structure, Secondary
Recombinant Proteins
Aplysia
Cerebratulus lacteus
Martí, M.A.
Bikiel, D.E.
Crespo, A.
Nardini, M.
Bolognesi, M.
Estrin, D.A.
Two distinct heme distal site states define Cerebratulus lacteus mini-hemoglobin oxygen affinity
topic_facet Computer simulation
Density functional theory
Hemoglobin
Molecular dynamics
Myoglobin
Neural hemoglobin
Quantum mechanical-molecular mechanical (QM-MM)
carbon monoxide
heme
hemoglobin
oxygen
Aplysia
article
Cerebratulus lacteus
computer simulation
density functional theory
dissociation constant
energy transfer
enzyme active site
geometry
hydrogen bond
molecular dynamics
nervous tissue
nonhuman
oxygen affinity
priority journal
quantum mechanics
site directed mutagenesis
Amino Acid Substitution
Animals
Annelida
Binding Sites
Heme
Hemoglobins
Humans
Hydrogen Bonding
Kinetics
Models, Molecular
Mutagenesis, Site-Directed
Oxyhemoglobins
Protein Structure, Secondary
Recombinant Proteins
Aplysia
Cerebratulus lacteus
description The nerve tissue hemoglobin of Cerebratulus lacteus (CerHb) is the smallest naturally occurring known hemoglobin. Stabilization of the diatomic bound, species (e.g., O2) is achieved through a network of hydrogen bonds based on three key residues TyrB10, GlnE7, and ThrE11. The first two residues are typically associated in hemoglobins with enhanced O2 affinity, related to hydrogen bond stabilization of the heme-bound O2 resulting in a decrease of the ligand dissociation rates. In contrast to the above observations, the affinity of CerHb for O2 is only moderate, and the rate of O2 dissociation is unexpectedly high. To gain insight on the diverse molecular mechanisms controlling ligand affinities, we have analyzed w.t. CerHb and its ThrE11→Val mutant by means of joint molecular dynamics and quantum mechanics simulation techniques, complementing recent site-directed mutagenesis experiments. Our results suggest that the observed O2 dissociation rates can only be explained through a dynamic equilibrium between high and low affinity states of the w.t. CerHb heme distal site. © 2005 Wiley-Liss, Inc.
format JOUR
author Martí, M.A.
Bikiel, D.E.
Crespo, A.
Nardini, M.
Bolognesi, M.
Estrin, D.A.
author_facet Martí, M.A.
Bikiel, D.E.
Crespo, A.
Nardini, M.
Bolognesi, M.
Estrin, D.A.
author_sort Martí, M.A.
title Two distinct heme distal site states define Cerebratulus lacteus mini-hemoglobin oxygen affinity
title_short Two distinct heme distal site states define Cerebratulus lacteus mini-hemoglobin oxygen affinity
title_full Two distinct heme distal site states define Cerebratulus lacteus mini-hemoglobin oxygen affinity
title_fullStr Two distinct heme distal site states define Cerebratulus lacteus mini-hemoglobin oxygen affinity
title_full_unstemmed Two distinct heme distal site states define Cerebratulus lacteus mini-hemoglobin oxygen affinity
title_sort two distinct heme distal site states define cerebratulus lacteus mini-hemoglobin oxygen affinity
url http://hdl.handle.net/20.500.12110/paper_08873585_v62_n3_p641_Marti
work_keys_str_mv AT martima twodistincthemedistalsitestatesdefinecerebratuluslacteusminihemoglobinoxygenaffinity
AT bikielde twodistincthemedistalsitestatesdefinecerebratuluslacteusminihemoglobinoxygenaffinity
AT crespoa twodistincthemedistalsitestatesdefinecerebratuluslacteusminihemoglobinoxygenaffinity
AT nardinim twodistincthemedistalsitestatesdefinecerebratuluslacteusminihemoglobinoxygenaffinity
AT bolognesim twodistincthemedistalsitestatesdefinecerebratuluslacteusminihemoglobinoxygenaffinity
AT estrinda twodistincthemedistalsitestatesdefinecerebratuluslacteusminihemoglobinoxygenaffinity
_version_ 1807320069462556672