On the Davenport–Mahler bound
We prove that the Davenport–Mahler bound holds for arbitrary graphs with vertices on the set of roots of a given univariate polynomial with complex coefficients. © 2016 Elsevier Inc.
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0885064X_v41_n_p72_Escorcielo |
Aporte de: |
id |
todo:paper_0885064X_v41_n_p72_Escorcielo |
---|---|
record_format |
dspace |
spelling |
todo:paper_0885064X_v41_n_p72_Escorcielo2023-10-03T15:40:42Z On the Davenport–Mahler bound Escorcielo, P. Perrucci, D. Davenport–Mahler bound Root separation Subdiscriminants Numerical analysis Arbitrary graphs Complex coefficients Subdiscriminants Univariate Computational complexity We prove that the Davenport–Mahler bound holds for arbitrary graphs with vertices on the set of roots of a given univariate polynomial with complex coefficients. © 2016 Elsevier Inc. Fil:Perrucci, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0885064X_v41_n_p72_Escorcielo |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Davenport–Mahler bound Root separation Subdiscriminants Numerical analysis Arbitrary graphs Complex coefficients Subdiscriminants Univariate Computational complexity |
spellingShingle |
Davenport–Mahler bound Root separation Subdiscriminants Numerical analysis Arbitrary graphs Complex coefficients Subdiscriminants Univariate Computational complexity Escorcielo, P. Perrucci, D. On the Davenport–Mahler bound |
topic_facet |
Davenport–Mahler bound Root separation Subdiscriminants Numerical analysis Arbitrary graphs Complex coefficients Subdiscriminants Univariate Computational complexity |
description |
We prove that the Davenport–Mahler bound holds for arbitrary graphs with vertices on the set of roots of a given univariate polynomial with complex coefficients. © 2016 Elsevier Inc. |
format |
JOUR |
author |
Escorcielo, P. Perrucci, D. |
author_facet |
Escorcielo, P. Perrucci, D. |
author_sort |
Escorcielo, P. |
title |
On the Davenport–Mahler bound |
title_short |
On the Davenport–Mahler bound |
title_full |
On the Davenport–Mahler bound |
title_fullStr |
On the Davenport–Mahler bound |
title_full_unstemmed |
On the Davenport–Mahler bound |
title_sort |
on the davenport–mahler bound |
url |
http://hdl.handle.net/20.500.12110/paper_0885064X_v41_n_p72_Escorcielo |
work_keys_str_mv |
AT escorcielop onthedavenportmahlerbound AT perruccid onthedavenportmahlerbound |
_version_ |
1807317279804751872 |