Constraints on physiological function associated with branch architecture and wood density in tropical forest trees
This study examined how leaf and stem functional traits related to gas exchange and water balance scale with two potential proxies for tree hydraulic architecture: the leaf area:sapwood area ratio (AL:AS) and wood density (ρw). We studied the upper crowns of individuals of 15 tropical forest tree sp...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0829318X_v28_n11_p1609_Meinzer |
Aporte de: |
id |
todo:paper_0829318X_v28_n11_p1609_Meinzer |
---|---|
record_format |
dspace |
spelling |
todo:paper_0829318X_v28_n11_p1609_Meinzer2023-10-03T15:40:03Z Constraints on physiological function associated with branch architecture and wood density in tropical forest trees Meinzer, F.C. Campanello, P.I. Domec, J.-C. Gatti, M.G. Goldstein, G. Villalobos-Vega, R. Woodruff, D.R. Capacitance Functional convergence Hydraulic architecture Osmotic potential Photosynthesis Transpiration Water potential forest canopy leaf moisture osmosis photosynthesis tropical forest wood This study examined how leaf and stem functional traits related to gas exchange and water balance scale with two potential proxies for tree hydraulic architecture: the leaf area:sapwood area ratio (AL:AS) and wood density (ρw). We studied the upper crowns of individuals of 15 tropical forest tree species at two sites in Panama with contrasting moisture regimes and forest types. Transpiration and maximum photosynthetic electron transport rate (ETRmax) per unit leaf area declined sharply with increasing AL:AS, as did the ratio of ETR max to leaf N content, an index of photosynthetic nitrogen-use efficiency. Midday leaf water potential, bulk leaf osmotic potential at zero turgor, branch xylem specific conductivity, leaf-specific conductivity and stem and leaf capacitance all declined with increasing ρw. At the branch scale, AL:AS and total leaf N content per unit sapwood area increased with ρw, resulting in a 30% increase in ETRmax per unit sapwood area with a doubling of ρw. These compensatory adjustments in AL:AS, N allocation and potential photosynthetic capacity at the branch level were insufficient to completely offset the increased carbon costs of producing denser wood, and exacerbated the negative impact of increasing ρw on branch hydraulics and leaf water status. The suite of tree functional and architectural traits studied appeared to be constrained by the hydraulic and mechanical consequences of variation in ρw. © 2008 Heron Publishing. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0829318X_v28_n11_p1609_Meinzer |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Capacitance Functional convergence Hydraulic architecture Osmotic potential Photosynthesis Transpiration Water potential forest canopy leaf moisture osmosis photosynthesis tropical forest wood |
spellingShingle |
Capacitance Functional convergence Hydraulic architecture Osmotic potential Photosynthesis Transpiration Water potential forest canopy leaf moisture osmosis photosynthesis tropical forest wood Meinzer, F.C. Campanello, P.I. Domec, J.-C. Gatti, M.G. Goldstein, G. Villalobos-Vega, R. Woodruff, D.R. Constraints on physiological function associated with branch architecture and wood density in tropical forest trees |
topic_facet |
Capacitance Functional convergence Hydraulic architecture Osmotic potential Photosynthesis Transpiration Water potential forest canopy leaf moisture osmosis photosynthesis tropical forest wood |
description |
This study examined how leaf and stem functional traits related to gas exchange and water balance scale with two potential proxies for tree hydraulic architecture: the leaf area:sapwood area ratio (AL:AS) and wood density (ρw). We studied the upper crowns of individuals of 15 tropical forest tree species at two sites in Panama with contrasting moisture regimes and forest types. Transpiration and maximum photosynthetic electron transport rate (ETRmax) per unit leaf area declined sharply with increasing AL:AS, as did the ratio of ETR max to leaf N content, an index of photosynthetic nitrogen-use efficiency. Midday leaf water potential, bulk leaf osmotic potential at zero turgor, branch xylem specific conductivity, leaf-specific conductivity and stem and leaf capacitance all declined with increasing ρw. At the branch scale, AL:AS and total leaf N content per unit sapwood area increased with ρw, resulting in a 30% increase in ETRmax per unit sapwood area with a doubling of ρw. These compensatory adjustments in AL:AS, N allocation and potential photosynthetic capacity at the branch level were insufficient to completely offset the increased carbon costs of producing denser wood, and exacerbated the negative impact of increasing ρw on branch hydraulics and leaf water status. The suite of tree functional and architectural traits studied appeared to be constrained by the hydraulic and mechanical consequences of variation in ρw. © 2008 Heron Publishing. |
format |
JOUR |
author |
Meinzer, F.C. Campanello, P.I. Domec, J.-C. Gatti, M.G. Goldstein, G. Villalobos-Vega, R. Woodruff, D.R. |
author_facet |
Meinzer, F.C. Campanello, P.I. Domec, J.-C. Gatti, M.G. Goldstein, G. Villalobos-Vega, R. Woodruff, D.R. |
author_sort |
Meinzer, F.C. |
title |
Constraints on physiological function associated with branch architecture and wood density in tropical forest trees |
title_short |
Constraints on physiological function associated with branch architecture and wood density in tropical forest trees |
title_full |
Constraints on physiological function associated with branch architecture and wood density in tropical forest trees |
title_fullStr |
Constraints on physiological function associated with branch architecture and wood density in tropical forest trees |
title_full_unstemmed |
Constraints on physiological function associated with branch architecture and wood density in tropical forest trees |
title_sort |
constraints on physiological function associated with branch architecture and wood density in tropical forest trees |
url |
http://hdl.handle.net/20.500.12110/paper_0829318X_v28_n11_p1609_Meinzer |
work_keys_str_mv |
AT meinzerfc constraintsonphysiologicalfunctionassociatedwithbrancharchitectureandwooddensityintropicalforesttrees AT campanellopi constraintsonphysiologicalfunctionassociatedwithbrancharchitectureandwooddensityintropicalforesttrees AT domecjc constraintsonphysiologicalfunctionassociatedwithbrancharchitectureandwooddensityintropicalforesttrees AT gattimg constraintsonphysiologicalfunctionassociatedwithbrancharchitectureandwooddensityintropicalforesttrees AT goldsteing constraintsonphysiologicalfunctionassociatedwithbrancharchitectureandwooddensityintropicalforesttrees AT villalobosvegar constraintsonphysiologicalfunctionassociatedwithbrancharchitectureandwooddensityintropicalforesttrees AT woodruffdr constraintsonphysiologicalfunctionassociatedwithbrancharchitectureandwooddensityintropicalforesttrees |
_version_ |
1807315878143852544 |