Subresultants, Sylvester sums and the rational interpolation problem
We present a solution for the classical univariate rational interpolation problem by means of (univariate) subresultants. In the case of Cauchy interpolation (interpolation without multiplicities), we give explicit formulas for the solution in terms of symmetric functions of the input data, generali...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_07477171_v68_nP1_p72_DAndrea |
Aporte de: |
id |
todo:paper_07477171_v68_nP1_p72_DAndrea |
---|---|
record_format |
dspace |
spelling |
todo:paper_07477171_v68_nP1_p72_DAndrea2023-10-03T15:38:59Z Subresultants, Sylvester sums and the rational interpolation problem D'Andrea, C. Krick, T. Szanto, A. Cauchy interpolation Osculatory interpolation Rational Hermite interpolation Rational interpolation Subresultants Sylvester sums We present a solution for the classical univariate rational interpolation problem by means of (univariate) subresultants. In the case of Cauchy interpolation (interpolation without multiplicities), we give explicit formulas for the solution in terms of symmetric functions of the input data, generalizing the well-known formulas for Lagrange interpolation. In the case of the osculatory rational interpolation (interpolation with multiplicities), we give determinantal expressions in terms of the input data, making explicit some matrix formulations that can independently be derived from previous results by Beckermann and Labahn. © 2014 Elsevier Ltd. Fil:D'Andrea, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_07477171_v68_nP1_p72_DAndrea |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Cauchy interpolation Osculatory interpolation Rational Hermite interpolation Rational interpolation Subresultants Sylvester sums |
spellingShingle |
Cauchy interpolation Osculatory interpolation Rational Hermite interpolation Rational interpolation Subresultants Sylvester sums D'Andrea, C. Krick, T. Szanto, A. Subresultants, Sylvester sums and the rational interpolation problem |
topic_facet |
Cauchy interpolation Osculatory interpolation Rational Hermite interpolation Rational interpolation Subresultants Sylvester sums |
description |
We present a solution for the classical univariate rational interpolation problem by means of (univariate) subresultants. In the case of Cauchy interpolation (interpolation without multiplicities), we give explicit formulas for the solution in terms of symmetric functions of the input data, generalizing the well-known formulas for Lagrange interpolation. In the case of the osculatory rational interpolation (interpolation with multiplicities), we give determinantal expressions in terms of the input data, making explicit some matrix formulations that can independently be derived from previous results by Beckermann and Labahn. © 2014 Elsevier Ltd. |
format |
JOUR |
author |
D'Andrea, C. Krick, T. Szanto, A. |
author_facet |
D'Andrea, C. Krick, T. Szanto, A. |
author_sort |
D'Andrea, C. |
title |
Subresultants, Sylvester sums and the rational interpolation problem |
title_short |
Subresultants, Sylvester sums and the rational interpolation problem |
title_full |
Subresultants, Sylvester sums and the rational interpolation problem |
title_fullStr |
Subresultants, Sylvester sums and the rational interpolation problem |
title_full_unstemmed |
Subresultants, Sylvester sums and the rational interpolation problem |
title_sort |
subresultants, sylvester sums and the rational interpolation problem |
url |
http://hdl.handle.net/20.500.12110/paper_07477171_v68_nP1_p72_DAndrea |
work_keys_str_mv |
AT dandreac subresultantssylvestersumsandtherationalinterpolationproblem AT krickt subresultantssylvestersumsandtherationalinterpolationproblem AT szantoa subresultantssylvestersumsandtherationalinterpolationproblem |
_version_ |
1807320269091504128 |