Surface plasmon polaritons in attenuated total reflection systems with metamaterials: Homogeneous problem
In this work we study the propagation characteristics of surface plasmon polaritons (surface eigenmodes) of Kretschmann attenuated total reflection structures with metamaterials. Contrary to the conventional case, in which surface polaritons with positive phase velocity appear at the boundary of a m...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_07403224_v28_n8_p2042_Zeller |
Aporte de: |
id |
todo:paper_07403224_v28_n8_p2042_Zeller |
---|---|
record_format |
dspace |
spelling |
todo:paper_07403224_v28_n8_p2042_Zeller2023-10-03T15:38:13Z Surface plasmon polaritons in attenuated total reflection systems with metamaterials: Homogeneous problem Zeller, M. Cuevas, M. Depine, R.A. Electromagnetic wave polarization Electromagnetic wave reflection Metamaterials Phase velocity Phonons Photons Plasmons Refractive index Solids Attenuated total reflections Constitutive parameters Eigen modes Imaginary parts Negative refractive index Numerical example Polaritons Propagation characteristics Propagation constant Surface plasmon polaritons Surface polaritons Quantum theory In this work we study the propagation characteristics of surface plasmon polaritons (surface eigenmodes) of Kretschmann attenuated total reflection structures with metamaterials. Contrary to the conventional case, in which surface polaritons with positive phase velocity appear at the boundary of a metallic guide, we consider a case where surface polaritons propagate along the boundary of a transparent metamaterial guide with negative refractive index. Depending on the choice of the metamaterial constitutive parameters, these polaritons can have either positive (forward) or negative (backward) phase velocity. For both situations we show numerical examples that illustrate the variation of the real and imaginary parts of the propagation constant with the guide width and the spatial distributions of energy. © 2011 Optical Society of America. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_07403224_v28_n8_p2042_Zeller |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Electromagnetic wave polarization Electromagnetic wave reflection Metamaterials Phase velocity Phonons Photons Plasmons Refractive index Solids Attenuated total reflections Constitutive parameters Eigen modes Imaginary parts Negative refractive index Numerical example Polaritons Propagation characteristics Propagation constant Surface plasmon polaritons Surface polaritons Quantum theory |
spellingShingle |
Electromagnetic wave polarization Electromagnetic wave reflection Metamaterials Phase velocity Phonons Photons Plasmons Refractive index Solids Attenuated total reflections Constitutive parameters Eigen modes Imaginary parts Negative refractive index Numerical example Polaritons Propagation characteristics Propagation constant Surface plasmon polaritons Surface polaritons Quantum theory Zeller, M. Cuevas, M. Depine, R.A. Surface plasmon polaritons in attenuated total reflection systems with metamaterials: Homogeneous problem |
topic_facet |
Electromagnetic wave polarization Electromagnetic wave reflection Metamaterials Phase velocity Phonons Photons Plasmons Refractive index Solids Attenuated total reflections Constitutive parameters Eigen modes Imaginary parts Negative refractive index Numerical example Polaritons Propagation characteristics Propagation constant Surface plasmon polaritons Surface polaritons Quantum theory |
description |
In this work we study the propagation characteristics of surface plasmon polaritons (surface eigenmodes) of Kretschmann attenuated total reflection structures with metamaterials. Contrary to the conventional case, in which surface polaritons with positive phase velocity appear at the boundary of a metallic guide, we consider a case where surface polaritons propagate along the boundary of a transparent metamaterial guide with negative refractive index. Depending on the choice of the metamaterial constitutive parameters, these polaritons can have either positive (forward) or negative (backward) phase velocity. For both situations we show numerical examples that illustrate the variation of the real and imaginary parts of the propagation constant with the guide width and the spatial distributions of energy. © 2011 Optical Society of America. |
format |
JOUR |
author |
Zeller, M. Cuevas, M. Depine, R.A. |
author_facet |
Zeller, M. Cuevas, M. Depine, R.A. |
author_sort |
Zeller, M. |
title |
Surface plasmon polaritons in attenuated total reflection systems with metamaterials: Homogeneous problem |
title_short |
Surface plasmon polaritons in attenuated total reflection systems with metamaterials: Homogeneous problem |
title_full |
Surface plasmon polaritons in attenuated total reflection systems with metamaterials: Homogeneous problem |
title_fullStr |
Surface plasmon polaritons in attenuated total reflection systems with metamaterials: Homogeneous problem |
title_full_unstemmed |
Surface plasmon polaritons in attenuated total reflection systems with metamaterials: Homogeneous problem |
title_sort |
surface plasmon polaritons in attenuated total reflection systems with metamaterials: homogeneous problem |
url |
http://hdl.handle.net/20.500.12110/paper_07403224_v28_n8_p2042_Zeller |
work_keys_str_mv |
AT zellerm surfaceplasmonpolaritonsinattenuatedtotalreflectionsystemswithmetamaterialshomogeneousproblem AT cuevasm surfaceplasmonpolaritonsinattenuatedtotalreflectionsystemswithmetamaterialshomogeneousproblem AT depinera surfaceplasmonpolaritonsinattenuatedtotalreflectionsystemswithmetamaterialshomogeneousproblem |
_version_ |
1807319174904545280 |