Large solutions to an anisotropic quasilinear elliptic problem

In this paper we consider existence, asymptotic behavior near the boundary and uniqueness of positive solutions to the problem, in a bounded domain Ω ⊂ ℝN × ℝM, together with the boundary condition u (x, y) = ∞ on ∂Ω. We prove that the necessary and sufficient condition for the existence of a soluti...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: García-Melián, J., Rossi, J.D., de Lis, J.C.S.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_03733114_v189_n4_p689_GarciaMelian
Aporte de:
id todo:paper_03733114_v189_n4_p689_GarciaMelian
record_format dspace
spelling todo:paper_03733114_v189_n4_p689_GarciaMelian2023-10-03T15:30:18Z Large solutions to an anisotropic quasilinear elliptic problem García-Melián, J. Rossi, J.D. de Lis, J.C.S. In this paper we consider existence, asymptotic behavior near the boundary and uniqueness of positive solutions to the problem, in a bounded domain Ω ⊂ ℝN × ℝM, together with the boundary condition u (x, y) = ∞ on ∂Ω. We prove that the necessary and sufficient condition for the existence of a solution, to this problem is r > max{p-1, q-1}. Assuming that r > q-1 ≥ p-1 > 0 we will show that the exponent q controls the blow-up rates near the boundary in the sense that all points of ∂Ω share the same profile, that depends on q and r but not on p, with the sole exception of the vertical points (where the exponent p plays a role). © 2010 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_03733114_v189_n4_p689_GarciaMelian
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description In this paper we consider existence, asymptotic behavior near the boundary and uniqueness of positive solutions to the problem, in a bounded domain Ω ⊂ ℝN × ℝM, together with the boundary condition u (x, y) = ∞ on ∂Ω. We prove that the necessary and sufficient condition for the existence of a solution, to this problem is r > max{p-1, q-1}. Assuming that r > q-1 ≥ p-1 > 0 we will show that the exponent q controls the blow-up rates near the boundary in the sense that all points of ∂Ω share the same profile, that depends on q and r but not on p, with the sole exception of the vertical points (where the exponent p plays a role). © 2010 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag.
format JOUR
author García-Melián, J.
Rossi, J.D.
de Lis, J.C.S.
spellingShingle García-Melián, J.
Rossi, J.D.
de Lis, J.C.S.
Large solutions to an anisotropic quasilinear elliptic problem
author_facet García-Melián, J.
Rossi, J.D.
de Lis, J.C.S.
author_sort García-Melián, J.
title Large solutions to an anisotropic quasilinear elliptic problem
title_short Large solutions to an anisotropic quasilinear elliptic problem
title_full Large solutions to an anisotropic quasilinear elliptic problem
title_fullStr Large solutions to an anisotropic quasilinear elliptic problem
title_full_unstemmed Large solutions to an anisotropic quasilinear elliptic problem
title_sort large solutions to an anisotropic quasilinear elliptic problem
url http://hdl.handle.net/20.500.12110/paper_03733114_v189_n4_p689_GarciaMelian
work_keys_str_mv AT garciamelianj largesolutionstoananisotropicquasilinearellipticproblem
AT rossijd largesolutionstoananisotropicquasilinearellipticproblem
AT delisjcs largesolutionstoananisotropicquasilinearellipticproblem
_version_ 1807318610193940480