Limits as p (x) → ∞ of p (x)-harmonic functions
In this note we study the limit as p (x) → ∞ of solutions to - Δp (x) u = 0 in a domain Ω, with Dirichlet boundary conditions. Our approach consists in considering sequences of variable exponents converging uniformly to + ∞ and analyzing how the corresponding solutions of the problem converge and wh...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0362546X_v72_n1_p309_Manfredi |
Aporte de: |
id |
todo:paper_0362546X_v72_n1_p309_Manfredi |
---|---|
record_format |
dspace |
spelling |
todo:paper_0362546X_v72_n1_p309_Manfredi2023-10-03T15:27:22Z Limits as p (x) → ∞ of p (x)-harmonic functions Manfredi, J.J. Rossi, J.D. Urbano, J.M. Infinity Laplacian p (x)-Laplacian Variable exponents Viscosity solutions Corresponding solutions Dirichlet boundary condition Harmonic function Laplacians P (x)-Laplacian Viscosity solutions Fourier series Harmonic analysis Viscosity Laplace transforms In this note we study the limit as p (x) → ∞ of solutions to - Δp (x) u = 0 in a domain Ω, with Dirichlet boundary conditions. Our approach consists in considering sequences of variable exponents converging uniformly to + ∞ and analyzing how the corresponding solutions of the problem converge and which equation is satisfied by the limit. © 2009 Elsevier Ltd. All rights reserved. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0362546X_v72_n1_p309_Manfredi |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Infinity Laplacian p (x)-Laplacian Variable exponents Viscosity solutions Corresponding solutions Dirichlet boundary condition Harmonic function Laplacians P (x)-Laplacian Viscosity solutions Fourier series Harmonic analysis Viscosity Laplace transforms |
spellingShingle |
Infinity Laplacian p (x)-Laplacian Variable exponents Viscosity solutions Corresponding solutions Dirichlet boundary condition Harmonic function Laplacians P (x)-Laplacian Viscosity solutions Fourier series Harmonic analysis Viscosity Laplace transforms Manfredi, J.J. Rossi, J.D. Urbano, J.M. Limits as p (x) → ∞ of p (x)-harmonic functions |
topic_facet |
Infinity Laplacian p (x)-Laplacian Variable exponents Viscosity solutions Corresponding solutions Dirichlet boundary condition Harmonic function Laplacians P (x)-Laplacian Viscosity solutions Fourier series Harmonic analysis Viscosity Laplace transforms |
description |
In this note we study the limit as p (x) → ∞ of solutions to - Δp (x) u = 0 in a domain Ω, with Dirichlet boundary conditions. Our approach consists in considering sequences of variable exponents converging uniformly to + ∞ and analyzing how the corresponding solutions of the problem converge and which equation is satisfied by the limit. © 2009 Elsevier Ltd. All rights reserved. |
format |
JOUR |
author |
Manfredi, J.J. Rossi, J.D. Urbano, J.M. |
author_facet |
Manfredi, J.J. Rossi, J.D. Urbano, J.M. |
author_sort |
Manfredi, J.J. |
title |
Limits as p (x) → ∞ of p (x)-harmonic functions |
title_short |
Limits as p (x) → ∞ of p (x)-harmonic functions |
title_full |
Limits as p (x) → ∞ of p (x)-harmonic functions |
title_fullStr |
Limits as p (x) → ∞ of p (x)-harmonic functions |
title_full_unstemmed |
Limits as p (x) → ∞ of p (x)-harmonic functions |
title_sort |
limits as p (x) → ∞ of p (x)-harmonic functions |
url |
http://hdl.handle.net/20.500.12110/paper_0362546X_v72_n1_p309_Manfredi |
work_keys_str_mv |
AT manfredijj limitsaspxofpxharmonicfunctions AT rossijd limitsaspxofpxharmonicfunctions AT urbanojm limitsaspxofpxharmonicfunctions |
_version_ |
1807315940924194816 |