Limits as p (x) → ∞ of p (x)-harmonic functions

In this note we study the limit as p (x) → ∞ of solutions to - Δp (x) u = 0 in a domain Ω, with Dirichlet boundary conditions. Our approach consists in considering sequences of variable exponents converging uniformly to + ∞ and analyzing how the corresponding solutions of the problem converge and wh...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Manfredi, J.J., Rossi, J.D., Urbano, J.M.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0362546X_v72_n1_p309_Manfredi
Aporte de:
id todo:paper_0362546X_v72_n1_p309_Manfredi
record_format dspace
spelling todo:paper_0362546X_v72_n1_p309_Manfredi2023-10-03T15:27:22Z Limits as p (x) → ∞ of p (x)-harmonic functions Manfredi, J.J. Rossi, J.D. Urbano, J.M. Infinity Laplacian p (x)-Laplacian Variable exponents Viscosity solutions Corresponding solutions Dirichlet boundary condition Harmonic function Laplacians P (x)-Laplacian Viscosity solutions Fourier series Harmonic analysis Viscosity Laplace transforms In this note we study the limit as p (x) → ∞ of solutions to - Δp (x) u = 0 in a domain Ω, with Dirichlet boundary conditions. Our approach consists in considering sequences of variable exponents converging uniformly to + ∞ and analyzing how the corresponding solutions of the problem converge and which equation is satisfied by the limit. © 2009 Elsevier Ltd. All rights reserved. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0362546X_v72_n1_p309_Manfredi
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Infinity Laplacian
p (x)-Laplacian
Variable exponents
Viscosity solutions
Corresponding solutions
Dirichlet boundary condition
Harmonic function
Laplacians
P (x)-Laplacian
Viscosity solutions
Fourier series
Harmonic analysis
Viscosity
Laplace transforms
spellingShingle Infinity Laplacian
p (x)-Laplacian
Variable exponents
Viscosity solutions
Corresponding solutions
Dirichlet boundary condition
Harmonic function
Laplacians
P (x)-Laplacian
Viscosity solutions
Fourier series
Harmonic analysis
Viscosity
Laplace transforms
Manfredi, J.J.
Rossi, J.D.
Urbano, J.M.
Limits as p (x) → ∞ of p (x)-harmonic functions
topic_facet Infinity Laplacian
p (x)-Laplacian
Variable exponents
Viscosity solutions
Corresponding solutions
Dirichlet boundary condition
Harmonic function
Laplacians
P (x)-Laplacian
Viscosity solutions
Fourier series
Harmonic analysis
Viscosity
Laplace transforms
description In this note we study the limit as p (x) → ∞ of solutions to - Δp (x) u = 0 in a domain Ω, with Dirichlet boundary conditions. Our approach consists in considering sequences of variable exponents converging uniformly to + ∞ and analyzing how the corresponding solutions of the problem converge and which equation is satisfied by the limit. © 2009 Elsevier Ltd. All rights reserved.
format JOUR
author Manfredi, J.J.
Rossi, J.D.
Urbano, J.M.
author_facet Manfredi, J.J.
Rossi, J.D.
Urbano, J.M.
author_sort Manfredi, J.J.
title Limits as p (x) → ∞ of p (x)-harmonic functions
title_short Limits as p (x) → ∞ of p (x)-harmonic functions
title_full Limits as p (x) → ∞ of p (x)-harmonic functions
title_fullStr Limits as p (x) → ∞ of p (x)-harmonic functions
title_full_unstemmed Limits as p (x) → ∞ of p (x)-harmonic functions
title_sort limits as p (x) → ∞ of p (x)-harmonic functions
url http://hdl.handle.net/20.500.12110/paper_0362546X_v72_n1_p309_Manfredi
work_keys_str_mv AT manfredijj limitsaspxofpxharmonicfunctions
AT rossijd limitsaspxofpxharmonicfunctions
AT urbanojm limitsaspxofpxharmonicfunctions
_version_ 1807315940924194816