An n-dimensional pendulum-like equation via topological methods

We study the elliptic boundary value problem Δu + g(u) = p(x) with nonlinear periodic-type boundary conditions. We prove the existence of a solution under a Landesman-Lazer-type condition. Moreover, using the method of upper and lower solutions we study a problem which concerns the range of the semi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Amster, P., De Nápoli, P., Mariani, M.C.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0362546X_v60_n2_p389_Amster
Aporte de:
id todo:paper_0362546X_v60_n2_p389_Amster
record_format dspace
spelling todo:paper_0362546X_v60_n2_p389_Amster2023-10-03T15:27:18Z An n-dimensional pendulum-like equation via topological methods Amster, P. De Nápoli, P. Mariani, M.C. Coincidence degree methods Elliptic problems Boundary conditions Functions Mathematical models Problem solving Theorem proving Bounded domains coincidence degree methods Elliptic problems Topological methods Topology We study the elliptic boundary value problem Δu + g(u) = p(x) with nonlinear periodic-type boundary conditions. We prove the existence of a solution under a Landesman-Lazer-type condition. Moreover, using the method of upper and lower solutions we study a problem which concerns the range of the semilinear operator Su = Δu + g(u). © 2004 Elsevier Ltd. All rights reserved. Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:De Nápoli, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0362546X_v60_n2_p389_Amster
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Coincidence degree methods
Elliptic problems
Boundary conditions
Functions
Mathematical models
Problem solving
Theorem proving
Bounded domains
coincidence degree methods
Elliptic problems
Topological methods
Topology
spellingShingle Coincidence degree methods
Elliptic problems
Boundary conditions
Functions
Mathematical models
Problem solving
Theorem proving
Bounded domains
coincidence degree methods
Elliptic problems
Topological methods
Topology
Amster, P.
De Nápoli, P.
Mariani, M.C.
An n-dimensional pendulum-like equation via topological methods
topic_facet Coincidence degree methods
Elliptic problems
Boundary conditions
Functions
Mathematical models
Problem solving
Theorem proving
Bounded domains
coincidence degree methods
Elliptic problems
Topological methods
Topology
description We study the elliptic boundary value problem Δu + g(u) = p(x) with nonlinear periodic-type boundary conditions. We prove the existence of a solution under a Landesman-Lazer-type condition. Moreover, using the method of upper and lower solutions we study a problem which concerns the range of the semilinear operator Su = Δu + g(u). © 2004 Elsevier Ltd. All rights reserved.
format JOUR
author Amster, P.
De Nápoli, P.
Mariani, M.C.
author_facet Amster, P.
De Nápoli, P.
Mariani, M.C.
author_sort Amster, P.
title An n-dimensional pendulum-like equation via topological methods
title_short An n-dimensional pendulum-like equation via topological methods
title_full An n-dimensional pendulum-like equation via topological methods
title_fullStr An n-dimensional pendulum-like equation via topological methods
title_full_unstemmed An n-dimensional pendulum-like equation via topological methods
title_sort n-dimensional pendulum-like equation via topological methods
url http://hdl.handle.net/20.500.12110/paper_0362546X_v60_n2_p389_Amster
work_keys_str_mv AT amsterp anndimensionalpendulumlikeequationviatopologicalmethods
AT denapolip anndimensionalpendulumlikeequationviatopologicalmethods
AT marianimc anndimensionalpendulumlikeequationviatopologicalmethods
AT amsterp ndimensionalpendulumlikeequationviatopologicalmethods
AT denapolip ndimensionalpendulumlikeequationviatopologicalmethods
AT marianimc ndimensionalpendulumlikeequationviatopologicalmethods
_version_ 1807318752406011904