Nonnegative solutions of ut = Δ(u - 1)+ : Regularity and uniqueness for the cauchy problem
Fil:Korten, M.K. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Guardado en:
Autor principal: | |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0362546X_v27_n5_p589_Korten |
Aporte de: |
id |
todo:paper_0362546X_v27_n5_p589_Korten |
---|---|
record_format |
dspace |
spelling |
todo:paper_0362546X_v27_n5_p589_Korten2023-10-03T15:27:12Z Nonnegative solutions of ut = Δ(u - 1)+ : Regularity and uniqueness for the cauchy problem Korten, M.K. Local nonnegative distributional solutions Measures as initial conditions Nonlinear degenerate parabolic equations Optimal uniqueness conditions Boundary conditions Cylinders (shapes) Estimation Integration Numerical methods Optimization Set theory Fubini theorem Local nonnegative distributional solutions Nonlinear degenerate parabolic equations Optimal uniqueness conditions Regularity theory Stefan type problems Nonlinear equations Fil:Korten, M.K. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0362546X_v27_n5_p589_Korten |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Local nonnegative distributional solutions Measures as initial conditions Nonlinear degenerate parabolic equations Optimal uniqueness conditions Boundary conditions Cylinders (shapes) Estimation Integration Numerical methods Optimization Set theory Fubini theorem Local nonnegative distributional solutions Nonlinear degenerate parabolic equations Optimal uniqueness conditions Regularity theory Stefan type problems Nonlinear equations |
spellingShingle |
Local nonnegative distributional solutions Measures as initial conditions Nonlinear degenerate parabolic equations Optimal uniqueness conditions Boundary conditions Cylinders (shapes) Estimation Integration Numerical methods Optimization Set theory Fubini theorem Local nonnegative distributional solutions Nonlinear degenerate parabolic equations Optimal uniqueness conditions Regularity theory Stefan type problems Nonlinear equations Korten, M.K. Nonnegative solutions of ut = Δ(u - 1)+ : Regularity and uniqueness for the cauchy problem |
topic_facet |
Local nonnegative distributional solutions Measures as initial conditions Nonlinear degenerate parabolic equations Optimal uniqueness conditions Boundary conditions Cylinders (shapes) Estimation Integration Numerical methods Optimization Set theory Fubini theorem Local nonnegative distributional solutions Nonlinear degenerate parabolic equations Optimal uniqueness conditions Regularity theory Stefan type problems Nonlinear equations |
description |
Fil:Korten, M.K. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
format |
JOUR |
author |
Korten, M.K. |
author_facet |
Korten, M.K. |
author_sort |
Korten, M.K. |
title |
Nonnegative solutions of ut = Δ(u - 1)+ : Regularity and uniqueness for the cauchy problem |
title_short |
Nonnegative solutions of ut = Δ(u - 1)+ : Regularity and uniqueness for the cauchy problem |
title_full |
Nonnegative solutions of ut = Δ(u - 1)+ : Regularity and uniqueness for the cauchy problem |
title_fullStr |
Nonnegative solutions of ut = Δ(u - 1)+ : Regularity and uniqueness for the cauchy problem |
title_full_unstemmed |
Nonnegative solutions of ut = Δ(u - 1)+ : Regularity and uniqueness for the cauchy problem |
title_sort |
nonnegative solutions of ut = δ(u - 1)+ : regularity and uniqueness for the cauchy problem |
url |
http://hdl.handle.net/20.500.12110/paper_0362546X_v27_n5_p589_Korten |
work_keys_str_mv |
AT kortenmk nonnegativesolutionsofutdu1regularityanduniquenessforthecauchyproblem |
_version_ |
1807323712343506944 |