The first non-zero Neumann p-fractional eigenvalue
In this work we study the asymptotic behavior of the first non-zero Neumann p-fractional eigenvalue λ1(s,p) as s → 1- and as p → ∞. We show that there exists a constant K such that K(1-s)λ1(s,p) goes to the first non-zero Neumann eigenvalue of the p-Laplacian. While in the limit case p → ∞, we prove...
Guardado en:
Autores principales: | Del Pezzo, L.M., Salort, A.M. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0362546X_v118_n_p130_DelPezzo |
Aporte de: |
Ejemplares similares
-
The first non-zero Neumann p-fractional eigenvalue
por: Del Pezzo, Leandro M., et al.
Publicado: (2015) -
The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians
por: Rossi, Julio Daniel
Publicado: (2016) -
The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians
por: Bonheure, D., et al. -
An optimization problem for the first eigenvalue of the p-fractional Laplacian
por: Del Pezzo, L., et al. -
On the first nontrivial eigenvalue of the ∞-laplacian with neumann boundary conditions
por: Rossi, Julio Daniel
Publicado: (2016)