The first non-zero Neumann p-fractional eigenvalue

In this work we study the asymptotic behavior of the first non-zero Neumann p-fractional eigenvalue λ1(s,p) as s → 1- and as p → ∞. We show that there exists a constant K such that K(1-s)λ1(s,p) goes to the first non-zero Neumann eigenvalue of the p-Laplacian. While in the limit case p → ∞, we prove...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Del Pezzo, L.M., Salort, A.M.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0362546X_v118_n_p130_DelPezzo
Aporte de:
id todo:paper_0362546X_v118_n_p130_DelPezzo
record_format dspace
spelling todo:paper_0362546X_v118_n_p130_DelPezzo2023-10-03T15:27:09Z The first non-zero Neumann p-fractional eigenvalue Del Pezzo, L.M. Salort, A.M. Hölder infinity Laplacian Neumann eigenvalues Nonlinear fractional Laplacian Laplace transforms Asymptotic behaviors Eigen-value Fractional Laplacian Infinity laplacian Laplacians Neumann Neumann eigenvalues P-Laplacian Eigenvalues and eigenfunctions In this work we study the asymptotic behavior of the first non-zero Neumann p-fractional eigenvalue λ1(s,p) as s → 1- and as p → ∞. We show that there exists a constant K such that K(1-s)λ1(s,p) goes to the first non-zero Neumann eigenvalue of the p-Laplacian. While in the limit case p → ∞, we prove that λ-(1,s)1/p goes to an eigenvalue of the Hölder ∞-Laplacian. © 2015 Elsevier Ltd. All rights reserved. Fil:Del Pezzo, L.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Salort, A.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0362546X_v118_n_p130_DelPezzo
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Hölder infinity Laplacian
Neumann eigenvalues
Nonlinear fractional Laplacian
Laplace transforms
Asymptotic behaviors
Eigen-value
Fractional Laplacian
Infinity laplacian
Laplacians
Neumann
Neumann eigenvalues
P-Laplacian
Eigenvalues and eigenfunctions
spellingShingle Hölder infinity Laplacian
Neumann eigenvalues
Nonlinear fractional Laplacian
Laplace transforms
Asymptotic behaviors
Eigen-value
Fractional Laplacian
Infinity laplacian
Laplacians
Neumann
Neumann eigenvalues
P-Laplacian
Eigenvalues and eigenfunctions
Del Pezzo, L.M.
Salort, A.M.
The first non-zero Neumann p-fractional eigenvalue
topic_facet Hölder infinity Laplacian
Neumann eigenvalues
Nonlinear fractional Laplacian
Laplace transforms
Asymptotic behaviors
Eigen-value
Fractional Laplacian
Infinity laplacian
Laplacians
Neumann
Neumann eigenvalues
P-Laplacian
Eigenvalues and eigenfunctions
description In this work we study the asymptotic behavior of the first non-zero Neumann p-fractional eigenvalue λ1(s,p) as s → 1- and as p → ∞. We show that there exists a constant K such that K(1-s)λ1(s,p) goes to the first non-zero Neumann eigenvalue of the p-Laplacian. While in the limit case p → ∞, we prove that λ-(1,s)1/p goes to an eigenvalue of the Hölder ∞-Laplacian. © 2015 Elsevier Ltd. All rights reserved.
format JOUR
author Del Pezzo, L.M.
Salort, A.M.
author_facet Del Pezzo, L.M.
Salort, A.M.
author_sort Del Pezzo, L.M.
title The first non-zero Neumann p-fractional eigenvalue
title_short The first non-zero Neumann p-fractional eigenvalue
title_full The first non-zero Neumann p-fractional eigenvalue
title_fullStr The first non-zero Neumann p-fractional eigenvalue
title_full_unstemmed The first non-zero Neumann p-fractional eigenvalue
title_sort first non-zero neumann p-fractional eigenvalue
url http://hdl.handle.net/20.500.12110/paper_0362546X_v118_n_p130_DelPezzo
work_keys_str_mv AT delpezzolm thefirstnonzeroneumannpfractionaleigenvalue
AT salortam thefirstnonzeroneumannpfractionaleigenvalue
AT delpezzolm firstnonzeroneumannpfractionaleigenvalue
AT salortam firstnonzeroneumannpfractionaleigenvalue
_version_ 1807318822486540288