The first non-zero Neumann p-fractional eigenvalue

In this work we study the asymptotic behavior of the first non-zero Neumann p-fractional eigenvalue λ1(s,p) as s → 1- and as p → ∞. We show that there exists a constant K such that K(1-s)λ1(s,p) goes to the first non-zero Neumann eigenvalue of the p-Laplacian. While in the limit case p → ∞, we prove...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Del Pezzo, L.M., Salort, A.M.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0362546X_v118_n_p130_DelPezzo
Aporte de:
Descripción
Sumario:In this work we study the asymptotic behavior of the first non-zero Neumann p-fractional eigenvalue λ1(s,p) as s → 1- and as p → ∞. We show that there exists a constant K such that K(1-s)λ1(s,p) goes to the first non-zero Neumann eigenvalue of the p-Laplacian. While in the limit case p → ∞, we prove that λ-(1,s)1/p goes to an eigenvalue of the Hölder ∞-Laplacian. © 2015 Elsevier Ltd. All rights reserved.