On the simultaneous determination of dispersion and nonlinear adsorption parameters from displacement tests by using numerical models and optimisation techniques

The determination of the dispersion and adsorption parameters (either for the Freundlich or Langmuir adsorption isotherm models) can be determined by optimising the matching of the numerical solution of the adsorption-convection dispersion equation with the experimental effluent curves measured on d...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Grattoni, C.A., Dawe, R.A., Bidner, M.S.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_03091708_v16_n2_p127_Grattoni
Aporte de:
id todo:paper_03091708_v16_n2_p127_Grattoni
record_format dspace
spelling todo:paper_03091708_v16_n2_p127_Grattoni2023-10-03T15:23:02Z On the simultaneous determination of dispersion and nonlinear adsorption parameters from displacement tests by using numerical models and optimisation techniques Grattoni, C.A. Dawe, R.A. Bidner, M.S. adsorption dispersion displacement tests numerical models Optimization techniques parameters adsorption/dispersion displacement test numerical model optimisation parameter determination solute transport Adsorption Dispersions Finite difference method Materials testing Mathematical models Nonlinear equations Optimization Parameter estimation Porous materials Adsorption-convection dispersion equation Crank-Nicolson method Displacement tests Effluent curves Freundlich adsorption isotherms Langmuir adsorption isotherms Multivariable optimization technique Flow of fluids Adsorption Dispersion Modelling-Mathematical Models Numerical Optimization The determination of the dispersion and adsorption parameters (either for the Freundlich or Langmuir adsorption isotherm models) can be determined by optimising the matching of the numerical solution of the adsorption-convection dispersion equation with the experimental effluent curves measured on displacement tests in core material using multivariable optimisation techniques. The numerical solutions are obtained by solving the convection-dispersion-nonlinear adsorption equation by finite differences using the Crank-Nicolson method with iterations to account for nonlinearities. The optimisation routines are used to find the parameters that give the global minimum error between predicted and measured effluent curves. The results show that whenever the three parameters (the dispersion coefficient and two adsorption parameters) are simultaneously determined, the solution is not unique and depends on the adsorption model used. The nonuniqueness can be removed by performing an independent test such as a static adsorption test. © 1993. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_03091708_v16_n2_p127_Grattoni
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic adsorption
dispersion
displacement tests
numerical models
Optimization techniques
parameters
adsorption/dispersion
displacement test
numerical model
optimisation
parameter determination
solute transport
Adsorption
Dispersions
Finite difference method
Materials testing
Mathematical models
Nonlinear equations
Optimization
Parameter estimation
Porous materials
Adsorption-convection dispersion equation
Crank-Nicolson method
Displacement tests
Effluent curves
Freundlich adsorption isotherms
Langmuir adsorption isotherms
Multivariable optimization technique
Flow of fluids
Adsorption
Dispersion
Modelling-Mathematical
Models
Numerical
Optimization
spellingShingle adsorption
dispersion
displacement tests
numerical models
Optimization techniques
parameters
adsorption/dispersion
displacement test
numerical model
optimisation
parameter determination
solute transport
Adsorption
Dispersions
Finite difference method
Materials testing
Mathematical models
Nonlinear equations
Optimization
Parameter estimation
Porous materials
Adsorption-convection dispersion equation
Crank-Nicolson method
Displacement tests
Effluent curves
Freundlich adsorption isotherms
Langmuir adsorption isotherms
Multivariable optimization technique
Flow of fluids
Adsorption
Dispersion
Modelling-Mathematical
Models
Numerical
Optimization
Grattoni, C.A.
Dawe, R.A.
Bidner, M.S.
On the simultaneous determination of dispersion and nonlinear adsorption parameters from displacement tests by using numerical models and optimisation techniques
topic_facet adsorption
dispersion
displacement tests
numerical models
Optimization techniques
parameters
adsorption/dispersion
displacement test
numerical model
optimisation
parameter determination
solute transport
Adsorption
Dispersions
Finite difference method
Materials testing
Mathematical models
Nonlinear equations
Optimization
Parameter estimation
Porous materials
Adsorption-convection dispersion equation
Crank-Nicolson method
Displacement tests
Effluent curves
Freundlich adsorption isotherms
Langmuir adsorption isotherms
Multivariable optimization technique
Flow of fluids
Adsorption
Dispersion
Modelling-Mathematical
Models
Numerical
Optimization
description The determination of the dispersion and adsorption parameters (either for the Freundlich or Langmuir adsorption isotherm models) can be determined by optimising the matching of the numerical solution of the adsorption-convection dispersion equation with the experimental effluent curves measured on displacement tests in core material using multivariable optimisation techniques. The numerical solutions are obtained by solving the convection-dispersion-nonlinear adsorption equation by finite differences using the Crank-Nicolson method with iterations to account for nonlinearities. The optimisation routines are used to find the parameters that give the global minimum error between predicted and measured effluent curves. The results show that whenever the three parameters (the dispersion coefficient and two adsorption parameters) are simultaneously determined, the solution is not unique and depends on the adsorption model used. The nonuniqueness can be removed by performing an independent test such as a static adsorption test. © 1993.
format JOUR
author Grattoni, C.A.
Dawe, R.A.
Bidner, M.S.
author_facet Grattoni, C.A.
Dawe, R.A.
Bidner, M.S.
author_sort Grattoni, C.A.
title On the simultaneous determination of dispersion and nonlinear adsorption parameters from displacement tests by using numerical models and optimisation techniques
title_short On the simultaneous determination of dispersion and nonlinear adsorption parameters from displacement tests by using numerical models and optimisation techniques
title_full On the simultaneous determination of dispersion and nonlinear adsorption parameters from displacement tests by using numerical models and optimisation techniques
title_fullStr On the simultaneous determination of dispersion and nonlinear adsorption parameters from displacement tests by using numerical models and optimisation techniques
title_full_unstemmed On the simultaneous determination of dispersion and nonlinear adsorption parameters from displacement tests by using numerical models and optimisation techniques
title_sort on the simultaneous determination of dispersion and nonlinear adsorption parameters from displacement tests by using numerical models and optimisation techniques
url http://hdl.handle.net/20.500.12110/paper_03091708_v16_n2_p127_Grattoni
work_keys_str_mv AT grattonica onthesimultaneousdeterminationofdispersionandnonlinearadsorptionparametersfromdisplacementtestsbyusingnumericalmodelsandoptimisationtechniques
AT dawera onthesimultaneousdeterminationofdispersionandnonlinearadsorptionparametersfromdisplacementtestsbyusingnumericalmodelsandoptimisationtechniques
AT bidnerms onthesimultaneousdeterminationofdispersionandnonlinearadsorptionparametersfromdisplacementtestsbyusingnumericalmodelsandoptimisationtechniques
_version_ 1807323948984041472