On the simultaneous determination of dispersion and nonlinear adsorption parameters from displacement tests by using numerical models and optimisation techniques
The determination of the dispersion and adsorption parameters (either for the Freundlich or Langmuir adsorption isotherm models) can be determined by optimising the matching of the numerical solution of the adsorption-convection dispersion equation with the experimental effluent curves measured on d...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_03091708_v16_n2_p127_Grattoni |
Aporte de: |
id |
todo:paper_03091708_v16_n2_p127_Grattoni |
---|---|
record_format |
dspace |
spelling |
todo:paper_03091708_v16_n2_p127_Grattoni2023-10-03T15:23:02Z On the simultaneous determination of dispersion and nonlinear adsorption parameters from displacement tests by using numerical models and optimisation techniques Grattoni, C.A. Dawe, R.A. Bidner, M.S. adsorption dispersion displacement tests numerical models Optimization techniques parameters adsorption/dispersion displacement test numerical model optimisation parameter determination solute transport Adsorption Dispersions Finite difference method Materials testing Mathematical models Nonlinear equations Optimization Parameter estimation Porous materials Adsorption-convection dispersion equation Crank-Nicolson method Displacement tests Effluent curves Freundlich adsorption isotherms Langmuir adsorption isotherms Multivariable optimization technique Flow of fluids Adsorption Dispersion Modelling-Mathematical Models Numerical Optimization The determination of the dispersion and adsorption parameters (either for the Freundlich or Langmuir adsorption isotherm models) can be determined by optimising the matching of the numerical solution of the adsorption-convection dispersion equation with the experimental effluent curves measured on displacement tests in core material using multivariable optimisation techniques. The numerical solutions are obtained by solving the convection-dispersion-nonlinear adsorption equation by finite differences using the Crank-Nicolson method with iterations to account for nonlinearities. The optimisation routines are used to find the parameters that give the global minimum error between predicted and measured effluent curves. The results show that whenever the three parameters (the dispersion coefficient and two adsorption parameters) are simultaneously determined, the solution is not unique and depends on the adsorption model used. The nonuniqueness can be removed by performing an independent test such as a static adsorption test. © 1993. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_03091708_v16_n2_p127_Grattoni |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
adsorption dispersion displacement tests numerical models Optimization techniques parameters adsorption/dispersion displacement test numerical model optimisation parameter determination solute transport Adsorption Dispersions Finite difference method Materials testing Mathematical models Nonlinear equations Optimization Parameter estimation Porous materials Adsorption-convection dispersion equation Crank-Nicolson method Displacement tests Effluent curves Freundlich adsorption isotherms Langmuir adsorption isotherms Multivariable optimization technique Flow of fluids Adsorption Dispersion Modelling-Mathematical Models Numerical Optimization |
spellingShingle |
adsorption dispersion displacement tests numerical models Optimization techniques parameters adsorption/dispersion displacement test numerical model optimisation parameter determination solute transport Adsorption Dispersions Finite difference method Materials testing Mathematical models Nonlinear equations Optimization Parameter estimation Porous materials Adsorption-convection dispersion equation Crank-Nicolson method Displacement tests Effluent curves Freundlich adsorption isotherms Langmuir adsorption isotherms Multivariable optimization technique Flow of fluids Adsorption Dispersion Modelling-Mathematical Models Numerical Optimization Grattoni, C.A. Dawe, R.A. Bidner, M.S. On the simultaneous determination of dispersion and nonlinear adsorption parameters from displacement tests by using numerical models and optimisation techniques |
topic_facet |
adsorption dispersion displacement tests numerical models Optimization techniques parameters adsorption/dispersion displacement test numerical model optimisation parameter determination solute transport Adsorption Dispersions Finite difference method Materials testing Mathematical models Nonlinear equations Optimization Parameter estimation Porous materials Adsorption-convection dispersion equation Crank-Nicolson method Displacement tests Effluent curves Freundlich adsorption isotherms Langmuir adsorption isotherms Multivariable optimization technique Flow of fluids Adsorption Dispersion Modelling-Mathematical Models Numerical Optimization |
description |
The determination of the dispersion and adsorption parameters (either for the Freundlich or Langmuir adsorption isotherm models) can be determined by optimising the matching of the numerical solution of the adsorption-convection dispersion equation with the experimental effluent curves measured on displacement tests in core material using multivariable optimisation techniques. The numerical solutions are obtained by solving the convection-dispersion-nonlinear adsorption equation by finite differences using the Crank-Nicolson method with iterations to account for nonlinearities. The optimisation routines are used to find the parameters that give the global minimum error between predicted and measured effluent curves. The results show that whenever the three parameters (the dispersion coefficient and two adsorption parameters) are simultaneously determined, the solution is not unique and depends on the adsorption model used. The nonuniqueness can be removed by performing an independent test such as a static adsorption test. © 1993. |
format |
JOUR |
author |
Grattoni, C.A. Dawe, R.A. Bidner, M.S. |
author_facet |
Grattoni, C.A. Dawe, R.A. Bidner, M.S. |
author_sort |
Grattoni, C.A. |
title |
On the simultaneous determination of dispersion and nonlinear adsorption parameters from displacement tests by using numerical models and optimisation techniques |
title_short |
On the simultaneous determination of dispersion and nonlinear adsorption parameters from displacement tests by using numerical models and optimisation techniques |
title_full |
On the simultaneous determination of dispersion and nonlinear adsorption parameters from displacement tests by using numerical models and optimisation techniques |
title_fullStr |
On the simultaneous determination of dispersion and nonlinear adsorption parameters from displacement tests by using numerical models and optimisation techniques |
title_full_unstemmed |
On the simultaneous determination of dispersion and nonlinear adsorption parameters from displacement tests by using numerical models and optimisation techniques |
title_sort |
on the simultaneous determination of dispersion and nonlinear adsorption parameters from displacement tests by using numerical models and optimisation techniques |
url |
http://hdl.handle.net/20.500.12110/paper_03091708_v16_n2_p127_Grattoni |
work_keys_str_mv |
AT grattonica onthesimultaneousdeterminationofdispersionandnonlinearadsorptionparametersfromdisplacementtestsbyusingnumericalmodelsandoptimisationtechniques AT dawera onthesimultaneousdeterminationofdispersionandnonlinearadsorptionparametersfromdisplacementtestsbyusingnumericalmodelsandoptimisationtechniques AT bidnerms onthesimultaneousdeterminationofdispersionandnonlinearadsorptionparametersfromdisplacementtestsbyusingnumericalmodelsandoptimisationtechniques |
_version_ |
1807323948984041472 |