An corrigendum on the paper: Solving the job-shop scheduling problem optimally by dynamic programming (Computers and Operations Research (2012) 39(12) (2968–2977) (S0305054812000500) (10.1016/j.cor.2012.02.024))

In [1] an algorithm is proposed for solving the job-shop scheduling problem optimally using a dynamic programming strategy. This is, according to our knowledge, the first exact algorithm for the Job Shop problem which is not based on integer linear programming and branch and bound. Despite the corre...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: van Hoorn, J.J., Nogueira, A., Ojea, I., Gromicho, J.A.S.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_03050548_v78_n_p381_vanHoorn
Aporte de:
id todo:paper_03050548_v78_n_p381_vanHoorn
record_format dspace
spelling todo:paper_03050548_v78_n_p381_vanHoorn2023-10-03T15:21:24Z An corrigendum on the paper: Solving the job-shop scheduling problem optimally by dynamic programming (Computers and Operations Research (2012) 39(12) (2968–2977) (S0305054812000500) (10.1016/j.cor.2012.02.024)) van Hoorn, J.J. Nogueira, A. Ojea, I. Gromicho, J.A.S. In [1] an algorithm is proposed for solving the job-shop scheduling problem optimally using a dynamic programming strategy. This is, according to our knowledge, the first exact algorithm for the Job Shop problem which is not based on integer linear programming and branch and bound. Despite the correctness of the dynamic programming algorithm presented in [1], the proof of correctness given there is unfortunately flawed. The contribution of the present note is to point out that flaw, and refer the reader to [2], where the flaw is corrected. Particularly, in [2], we recall the main idea of the proof proposed in [1] and present a counterexample that shows where the problem of that proof lies. Taking into account the nature of the problem, we propose a new approach for proving the correctness of the algorithm. This requires the introduction of new concepts and notation. It is important to remark that the new proof modifies our understanding of the algorithm that, in fact, works in a different way than the one explained in the original article. We also recommend [3], where all the elements for understanding the algorithm, the new proof of its correctness and the estimations of its complexity are fully developed. © 2016 Elsevier Ltd Fil:Ojea, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_03050548_v78_n_p381_vanHoorn
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description In [1] an algorithm is proposed for solving the job-shop scheduling problem optimally using a dynamic programming strategy. This is, according to our knowledge, the first exact algorithm for the Job Shop problem which is not based on integer linear programming and branch and bound. Despite the correctness of the dynamic programming algorithm presented in [1], the proof of correctness given there is unfortunately flawed. The contribution of the present note is to point out that flaw, and refer the reader to [2], where the flaw is corrected. Particularly, in [2], we recall the main idea of the proof proposed in [1] and present a counterexample that shows where the problem of that proof lies. Taking into account the nature of the problem, we propose a new approach for proving the correctness of the algorithm. This requires the introduction of new concepts and notation. It is important to remark that the new proof modifies our understanding of the algorithm that, in fact, works in a different way than the one explained in the original article. We also recommend [3], where all the elements for understanding the algorithm, the new proof of its correctness and the estimations of its complexity are fully developed. © 2016 Elsevier Ltd
format JOUR
author van Hoorn, J.J.
Nogueira, A.
Ojea, I.
Gromicho, J.A.S.
spellingShingle van Hoorn, J.J.
Nogueira, A.
Ojea, I.
Gromicho, J.A.S.
An corrigendum on the paper: Solving the job-shop scheduling problem optimally by dynamic programming (Computers and Operations Research (2012) 39(12) (2968–2977) (S0305054812000500) (10.1016/j.cor.2012.02.024))
author_facet van Hoorn, J.J.
Nogueira, A.
Ojea, I.
Gromicho, J.A.S.
author_sort van Hoorn, J.J.
title An corrigendum on the paper: Solving the job-shop scheduling problem optimally by dynamic programming (Computers and Operations Research (2012) 39(12) (2968–2977) (S0305054812000500) (10.1016/j.cor.2012.02.024))
title_short An corrigendum on the paper: Solving the job-shop scheduling problem optimally by dynamic programming (Computers and Operations Research (2012) 39(12) (2968–2977) (S0305054812000500) (10.1016/j.cor.2012.02.024))
title_full An corrigendum on the paper: Solving the job-shop scheduling problem optimally by dynamic programming (Computers and Operations Research (2012) 39(12) (2968–2977) (S0305054812000500) (10.1016/j.cor.2012.02.024))
title_fullStr An corrigendum on the paper: Solving the job-shop scheduling problem optimally by dynamic programming (Computers and Operations Research (2012) 39(12) (2968–2977) (S0305054812000500) (10.1016/j.cor.2012.02.024))
title_full_unstemmed An corrigendum on the paper: Solving the job-shop scheduling problem optimally by dynamic programming (Computers and Operations Research (2012) 39(12) (2968–2977) (S0305054812000500) (10.1016/j.cor.2012.02.024))
title_sort corrigendum on the paper: solving the job-shop scheduling problem optimally by dynamic programming (computers and operations research (2012) 39(12) (2968–2977) (s0305054812000500) (10.1016/j.cor.2012.02.024))
url http://hdl.handle.net/20.500.12110/paper_03050548_v78_n_p381_vanHoorn
work_keys_str_mv AT vanhoornjj ancorrigendumonthepapersolvingthejobshopschedulingproblemoptimallybydynamicprogrammingcomputersandoperationsresearch2012391229682977s0305054812000500101016jcor201202024
AT nogueiraa ancorrigendumonthepapersolvingthejobshopschedulingproblemoptimallybydynamicprogrammingcomputersandoperationsresearch2012391229682977s0305054812000500101016jcor201202024
AT ojeai ancorrigendumonthepapersolvingthejobshopschedulingproblemoptimallybydynamicprogrammingcomputersandoperationsresearch2012391229682977s0305054812000500101016jcor201202024
AT gromichojas ancorrigendumonthepapersolvingthejobshopschedulingproblemoptimallybydynamicprogrammingcomputersandoperationsresearch2012391229682977s0305054812000500101016jcor201202024
AT vanhoornjj corrigendumonthepapersolvingthejobshopschedulingproblemoptimallybydynamicprogrammingcomputersandoperationsresearch2012391229682977s0305054812000500101016jcor201202024
AT nogueiraa corrigendumonthepapersolvingthejobshopschedulingproblemoptimallybydynamicprogrammingcomputersandoperationsresearch2012391229682977s0305054812000500101016jcor201202024
AT ojeai corrigendumonthepapersolvingthejobshopschedulingproblemoptimallybydynamicprogrammingcomputersandoperationsresearch2012391229682977s0305054812000500101016jcor201202024
AT gromichojas corrigendumonthepapersolvingthejobshopschedulingproblemoptimallybydynamicprogrammingcomputersandoperationsresearch2012391229682977s0305054812000500101016jcor201202024
_version_ 1807316916310638592