A tabu search heuristic for the equitable coloring problem
The Equitable Coloring Problem is a variant of the Graph Coloring Problem where the sizes of two arbitrary color classes differ in at most one unit. This additional condition, called equity constraints, arises naturally in several applications. Due to the hardness of the problem, current exact algor...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | SER |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_03029743_v8596LNCS_n_p347_MendezDiaz |
Aporte de: |
id |
todo:paper_03029743_v8596LNCS_n_p347_MendezDiaz |
---|---|
record_format |
dspace |
spelling |
todo:paper_03029743_v8596LNCS_n_p347_MendezDiaz2023-10-03T15:19:38Z A tabu search heuristic for the equitable coloring problem Méndez Díaz, I. Nasini, G. Severín, D. Associacao Portuguesa de Investigacao Operacional; de Lisboa, Centro de Investigacao Operacional; Faculdade de Ciencias da Universidade; Fundacao para a Ciencia e a Tecnologia; Instituto Nacional de Estatistica; Universite Paris-Dauphine, LAMSADE Combinatorial optimization Equitable coloring Tabu search Benchmarking Combinatorial optimization Heuristic algorithms Heuristic methods Arbitrary color Computational experiment Equitable coloring Exact algorithms Graph coloring problem Large-sized Local search Tabu Search heuristic Tabu search The Equitable Coloring Problem is a variant of the Graph Coloring Problem where the sizes of two arbitrary color classes differ in at most one unit. This additional condition, called equity constraints, arises naturally in several applications. Due to the hardness of the problem, current exact algorithms can not solve large-sized instances. Such instances must be addressed only via heuristic methods. In this paper we present a tabu search heuristic for the Equitable Coloring Problem. This algorithm is an adaptation of the dynamic TabuCol version of Galinier and Hao. In order to satisfy equity constraints, new local search criteria are given. Computational experiments are carried out in order to find the best combination of parameters involved in the dynamic tenure of the heuristic. Finally, we show the good performance of our heuristic over known benchmark instances. © 2014 Springer International Publishing. Fil:Méndez Díaz, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Severín, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. SER info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_03029743_v8596LNCS_n_p347_MendezDiaz |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Combinatorial optimization Equitable coloring Tabu search Benchmarking Combinatorial optimization Heuristic algorithms Heuristic methods Arbitrary color Computational experiment Equitable coloring Exact algorithms Graph coloring problem Large-sized Local search Tabu Search heuristic Tabu search |
spellingShingle |
Combinatorial optimization Equitable coloring Tabu search Benchmarking Combinatorial optimization Heuristic algorithms Heuristic methods Arbitrary color Computational experiment Equitable coloring Exact algorithms Graph coloring problem Large-sized Local search Tabu Search heuristic Tabu search Méndez Díaz, I. Nasini, G. Severín, D. Associacao Portuguesa de Investigacao Operacional; de Lisboa, Centro de Investigacao Operacional; Faculdade de Ciencias da Universidade; Fundacao para a Ciencia e a Tecnologia; Instituto Nacional de Estatistica; Universite Paris-Dauphine, LAMSADE A tabu search heuristic for the equitable coloring problem |
topic_facet |
Combinatorial optimization Equitable coloring Tabu search Benchmarking Combinatorial optimization Heuristic algorithms Heuristic methods Arbitrary color Computational experiment Equitable coloring Exact algorithms Graph coloring problem Large-sized Local search Tabu Search heuristic Tabu search |
description |
The Equitable Coloring Problem is a variant of the Graph Coloring Problem where the sizes of two arbitrary color classes differ in at most one unit. This additional condition, called equity constraints, arises naturally in several applications. Due to the hardness of the problem, current exact algorithms can not solve large-sized instances. Such instances must be addressed only via heuristic methods. In this paper we present a tabu search heuristic for the Equitable Coloring Problem. This algorithm is an adaptation of the dynamic TabuCol version of Galinier and Hao. In order to satisfy equity constraints, new local search criteria are given. Computational experiments are carried out in order to find the best combination of parameters involved in the dynamic tenure of the heuristic. Finally, we show the good performance of our heuristic over known benchmark instances. © 2014 Springer International Publishing. |
format |
SER |
author |
Méndez Díaz, I. Nasini, G. Severín, D. Associacao Portuguesa de Investigacao Operacional; de Lisboa, Centro de Investigacao Operacional; Faculdade de Ciencias da Universidade; Fundacao para a Ciencia e a Tecnologia; Instituto Nacional de Estatistica; Universite Paris-Dauphine, LAMSADE |
author_facet |
Méndez Díaz, I. Nasini, G. Severín, D. Associacao Portuguesa de Investigacao Operacional; de Lisboa, Centro de Investigacao Operacional; Faculdade de Ciencias da Universidade; Fundacao para a Ciencia e a Tecnologia; Instituto Nacional de Estatistica; Universite Paris-Dauphine, LAMSADE |
author_sort |
Méndez Díaz, I. |
title |
A tabu search heuristic for the equitable coloring problem |
title_short |
A tabu search heuristic for the equitable coloring problem |
title_full |
A tabu search heuristic for the equitable coloring problem |
title_fullStr |
A tabu search heuristic for the equitable coloring problem |
title_full_unstemmed |
A tabu search heuristic for the equitable coloring problem |
title_sort |
tabu search heuristic for the equitable coloring problem |
url |
http://hdl.handle.net/20.500.12110/paper_03029743_v8596LNCS_n_p347_MendezDiaz |
work_keys_str_mv |
AT mendezdiazi atabusearchheuristicfortheequitablecoloringproblem AT nasinig atabusearchheuristicfortheequitablecoloringproblem AT severind atabusearchheuristicfortheequitablecoloringproblem AT associacaoportuguesadeinvestigacaooperacionaldelisboacentrodeinvestigacaooperacionalfaculdadedecienciasdauniversidadefundacaoparaacienciaeatecnologiainstitutonacionaldeestatisticauniversiteparisdauphinelamsade atabusearchheuristicfortheequitablecoloringproblem AT mendezdiazi tabusearchheuristicfortheequitablecoloringproblem AT nasinig tabusearchheuristicfortheequitablecoloringproblem AT severind tabusearchheuristicfortheequitablecoloringproblem AT associacaoportuguesadeinvestigacaooperacionaldelisboacentrodeinvestigacaooperacionalfaculdadedecienciasdauniversidadefundacaoparaacienciaeatecnologiainstitutonacionaldeestatisticauniversiteparisdauphinelamsade tabusearchheuristicfortheequitablecoloringproblem |
_version_ |
1807317343657787392 |