Shortcut to adiabaticity for an interacting Bose-Einstein condensate
We present an investigation of the fast decompression of a three-dimensional (3D) Bose-Einstein condensate (BEC) at finite temperature using an engineered trajectory for the harmonic trapping potential. Taking advantage of the scaling invariance properties of the time-dependent Gross-Pitaevskii equa...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_02955075_v93_n2_p_Schaff |
Aporte de: |
id |
todo:paper_02955075_v93_n2_p_Schaff |
---|---|
record_format |
dspace |
spelling |
todo:paper_02955075_v93_n2_p_Schaff2023-10-03T15:17:30Z Shortcut to adiabaticity for an interacting Bose-Einstein condensate Schaff, J.-F. Song, X.-L. Capuzzi, P. Vignolo, P. Labeyrie, G. We present an investigation of the fast decompression of a three-dimensional (3D) Bose-Einstein condensate (BEC) at finite temperature using an engineered trajectory for the harmonic trapping potential. Taking advantage of the scaling invariance properties of the time-dependent Gross-Pitaevskii equation, we exhibit a solution yielding a final state identical to that obtained through a perfectly adiabatic transformation, in a much shorter time. Experimentally, we perform a large trap decompression and displacement within a time comparable to the final radial trapping period. By simultaneously monitoring the BEC and the non-condensed fraction, we demonstrate that our specific trap trajectory is valid both for a quantum interacting many-body system and a classical ensemble of non-interacting particles. Copyright © EPLA, 2011. Fil:Capuzzi, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_02955075_v93_n2_p_Schaff |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
We present an investigation of the fast decompression of a three-dimensional (3D) Bose-Einstein condensate (BEC) at finite temperature using an engineered trajectory for the harmonic trapping potential. Taking advantage of the scaling invariance properties of the time-dependent Gross-Pitaevskii equation, we exhibit a solution yielding a final state identical to that obtained through a perfectly adiabatic transformation, in a much shorter time. Experimentally, we perform a large trap decompression and displacement within a time comparable to the final radial trapping period. By simultaneously monitoring the BEC and the non-condensed fraction, we demonstrate that our specific trap trajectory is valid both for a quantum interacting many-body system and a classical ensemble of non-interacting particles. Copyright © EPLA, 2011. |
format |
JOUR |
author |
Schaff, J.-F. Song, X.-L. Capuzzi, P. Vignolo, P. Labeyrie, G. |
spellingShingle |
Schaff, J.-F. Song, X.-L. Capuzzi, P. Vignolo, P. Labeyrie, G. Shortcut to adiabaticity for an interacting Bose-Einstein condensate |
author_facet |
Schaff, J.-F. Song, X.-L. Capuzzi, P. Vignolo, P. Labeyrie, G. |
author_sort |
Schaff, J.-F. |
title |
Shortcut to adiabaticity for an interacting Bose-Einstein condensate |
title_short |
Shortcut to adiabaticity for an interacting Bose-Einstein condensate |
title_full |
Shortcut to adiabaticity for an interacting Bose-Einstein condensate |
title_fullStr |
Shortcut to adiabaticity for an interacting Bose-Einstein condensate |
title_full_unstemmed |
Shortcut to adiabaticity for an interacting Bose-Einstein condensate |
title_sort |
shortcut to adiabaticity for an interacting bose-einstein condensate |
url |
http://hdl.handle.net/20.500.12110/paper_02955075_v93_n2_p_Schaff |
work_keys_str_mv |
AT schaffjf shortcuttoadiabaticityforaninteractingboseeinsteincondensate AT songxl shortcuttoadiabaticityforaninteractingboseeinsteincondensate AT capuzzip shortcuttoadiabaticityforaninteractingboseeinsteincondensate AT vignolop shortcuttoadiabaticityforaninteractingboseeinsteincondensate AT labeyrieg shortcuttoadiabaticityforaninteractingboseeinsteincondensate |
_version_ |
1807319377135009792 |