Shortcut to adiabaticity for an interacting Bose-Einstein condensate

We present an investigation of the fast decompression of a three-dimensional (3D) Bose-Einstein condensate (BEC) at finite temperature using an engineered trajectory for the harmonic trapping potential. Taking advantage of the scaling invariance properties of the time-dependent Gross-Pitaevskii equa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Schaff, J.-F., Song, X.-L., Capuzzi, P., Vignolo, P., Labeyrie, G.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_02955075_v93_n2_p_Schaff
Aporte de:
id todo:paper_02955075_v93_n2_p_Schaff
record_format dspace
spelling todo:paper_02955075_v93_n2_p_Schaff2023-10-03T15:17:30Z Shortcut to adiabaticity for an interacting Bose-Einstein condensate Schaff, J.-F. Song, X.-L. Capuzzi, P. Vignolo, P. Labeyrie, G. We present an investigation of the fast decompression of a three-dimensional (3D) Bose-Einstein condensate (BEC) at finite temperature using an engineered trajectory for the harmonic trapping potential. Taking advantage of the scaling invariance properties of the time-dependent Gross-Pitaevskii equation, we exhibit a solution yielding a final state identical to that obtained through a perfectly adiabatic transformation, in a much shorter time. Experimentally, we perform a large trap decompression and displacement within a time comparable to the final radial trapping period. By simultaneously monitoring the BEC and the non-condensed fraction, we demonstrate that our specific trap trajectory is valid both for a quantum interacting many-body system and a classical ensemble of non-interacting particles. Copyright © EPLA, 2011. Fil:Capuzzi, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_02955075_v93_n2_p_Schaff
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We present an investigation of the fast decompression of a three-dimensional (3D) Bose-Einstein condensate (BEC) at finite temperature using an engineered trajectory for the harmonic trapping potential. Taking advantage of the scaling invariance properties of the time-dependent Gross-Pitaevskii equation, we exhibit a solution yielding a final state identical to that obtained through a perfectly adiabatic transformation, in a much shorter time. Experimentally, we perform a large trap decompression and displacement within a time comparable to the final radial trapping period. By simultaneously monitoring the BEC and the non-condensed fraction, we demonstrate that our specific trap trajectory is valid both for a quantum interacting many-body system and a classical ensemble of non-interacting particles. Copyright © EPLA, 2011.
format JOUR
author Schaff, J.-F.
Song, X.-L.
Capuzzi, P.
Vignolo, P.
Labeyrie, G.
spellingShingle Schaff, J.-F.
Song, X.-L.
Capuzzi, P.
Vignolo, P.
Labeyrie, G.
Shortcut to adiabaticity for an interacting Bose-Einstein condensate
author_facet Schaff, J.-F.
Song, X.-L.
Capuzzi, P.
Vignolo, P.
Labeyrie, G.
author_sort Schaff, J.-F.
title Shortcut to adiabaticity for an interacting Bose-Einstein condensate
title_short Shortcut to adiabaticity for an interacting Bose-Einstein condensate
title_full Shortcut to adiabaticity for an interacting Bose-Einstein condensate
title_fullStr Shortcut to adiabaticity for an interacting Bose-Einstein condensate
title_full_unstemmed Shortcut to adiabaticity for an interacting Bose-Einstein condensate
title_sort shortcut to adiabaticity for an interacting bose-einstein condensate
url http://hdl.handle.net/20.500.12110/paper_02955075_v93_n2_p_Schaff
work_keys_str_mv AT schaffjf shortcuttoadiabaticityforaninteractingboseeinsteincondensate
AT songxl shortcuttoadiabaticityforaninteractingboseeinsteincondensate
AT capuzzip shortcuttoadiabaticityforaninteractingboseeinsteincondensate
AT vignolop shortcuttoadiabaticityforaninteractingboseeinsteincondensate
AT labeyrieg shortcuttoadiabaticityforaninteractingboseeinsteincondensate
_version_ 1807319377135009792