Anomalous group velocity at the high energy range of real 3D photonic nanostructures

We perform a theoretical study on the group velocity for finite thin artificial opal slabs made of a reduced number of layers in the spectral range where the light wavelength is on the order of the lattice parameter. The vector KKR method including extinction allows us to evaluate the finite-size ef...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Botey, M., Martorell, J., Lozano, G., Míguez, H., Dorado, L.A., Depine, R.A.
Formato: CONF
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0277786X_v7713_n_p_Botey
Aporte de:
id todo:paper_0277786X_v7713_n_p_Botey
record_format dspace
spelling todo:paper_0277786X_v7713_n_p_Botey2023-10-03T15:16:42Z Anomalous group velocity at the high energy range of real 3D photonic nanostructures Botey, M. Martorell, J. Lozano, G. Míguez, H. Dorado, L.A. Depine, R.A. Fast ligth Nanomaterials Photonic bandgap materials Anomalous behavior Artificial opals Crystal size Dielectric spheres Fast ligth Finite size effect Group velocities High-energy range KKR method Lattice parameters Light wavelengths Nanomaterials Number of layers Opal films Phase delay Photonic bandgap materials Photonic nanostructures Spectral range Superluminal Theoretical study Electric fields Energy gap Group delay Light propagation Light velocity Nanostructured materials Photonic crystals Spontaneous emission Photonic devices We perform a theoretical study on the group velocity for finite thin artificial opal slabs made of a reduced number of layers in the spectral range where the light wavelength is on the order of the lattice parameter. The vector KKR method including extinction allows us to evaluate the finite-size effects on light propagation in the ΓL and ΓX directions of fcc close-packed opal films made of dielectric spheres. The group is index determined from the phase delay introduced by the structure to the forwardly transmitted electric field. We show that for certain frequencies, light propagation can either be superluminal -positive or negative- or approach zero depending on the crystal size and absorption. Such anomalous behavior can be attributed to the finite character of the structure and provides confirmation of recently emerged experimental results. © 2010 Copyright SPIE - The International Society for Optical Engineering. Fil:Dorado, L.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Depine, R.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. CONF info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0277786X_v7713_n_p_Botey
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Fast ligth
Nanomaterials
Photonic bandgap materials
Anomalous behavior
Artificial opals
Crystal size
Dielectric spheres
Fast ligth
Finite size effect
Group velocities
High-energy range
KKR method
Lattice parameters
Light wavelengths
Nanomaterials
Number of layers
Opal films
Phase delay
Photonic bandgap materials
Photonic nanostructures
Spectral range
Superluminal
Theoretical study
Electric fields
Energy gap
Group delay
Light propagation
Light velocity
Nanostructured materials
Photonic crystals
Spontaneous emission
Photonic devices
spellingShingle Fast ligth
Nanomaterials
Photonic bandgap materials
Anomalous behavior
Artificial opals
Crystal size
Dielectric spheres
Fast ligth
Finite size effect
Group velocities
High-energy range
KKR method
Lattice parameters
Light wavelengths
Nanomaterials
Number of layers
Opal films
Phase delay
Photonic bandgap materials
Photonic nanostructures
Spectral range
Superluminal
Theoretical study
Electric fields
Energy gap
Group delay
Light propagation
Light velocity
Nanostructured materials
Photonic crystals
Spontaneous emission
Photonic devices
Botey, M.
Martorell, J.
Lozano, G.
Míguez, H.
Dorado, L.A.
Depine, R.A.
Anomalous group velocity at the high energy range of real 3D photonic nanostructures
topic_facet Fast ligth
Nanomaterials
Photonic bandgap materials
Anomalous behavior
Artificial opals
Crystal size
Dielectric spheres
Fast ligth
Finite size effect
Group velocities
High-energy range
KKR method
Lattice parameters
Light wavelengths
Nanomaterials
Number of layers
Opal films
Phase delay
Photonic bandgap materials
Photonic nanostructures
Spectral range
Superluminal
Theoretical study
Electric fields
Energy gap
Group delay
Light propagation
Light velocity
Nanostructured materials
Photonic crystals
Spontaneous emission
Photonic devices
description We perform a theoretical study on the group velocity for finite thin artificial opal slabs made of a reduced number of layers in the spectral range where the light wavelength is on the order of the lattice parameter. The vector KKR method including extinction allows us to evaluate the finite-size effects on light propagation in the ΓL and ΓX directions of fcc close-packed opal films made of dielectric spheres. The group is index determined from the phase delay introduced by the structure to the forwardly transmitted electric field. We show that for certain frequencies, light propagation can either be superluminal -positive or negative- or approach zero depending on the crystal size and absorption. Such anomalous behavior can be attributed to the finite character of the structure and provides confirmation of recently emerged experimental results. © 2010 Copyright SPIE - The International Society for Optical Engineering.
format CONF
author Botey, M.
Martorell, J.
Lozano, G.
Míguez, H.
Dorado, L.A.
Depine, R.A.
author_facet Botey, M.
Martorell, J.
Lozano, G.
Míguez, H.
Dorado, L.A.
Depine, R.A.
author_sort Botey, M.
title Anomalous group velocity at the high energy range of real 3D photonic nanostructures
title_short Anomalous group velocity at the high energy range of real 3D photonic nanostructures
title_full Anomalous group velocity at the high energy range of real 3D photonic nanostructures
title_fullStr Anomalous group velocity at the high energy range of real 3D photonic nanostructures
title_full_unstemmed Anomalous group velocity at the high energy range of real 3D photonic nanostructures
title_sort anomalous group velocity at the high energy range of real 3d photonic nanostructures
url http://hdl.handle.net/20.500.12110/paper_0277786X_v7713_n_p_Botey
work_keys_str_mv AT boteym anomalousgroupvelocityatthehighenergyrangeofreal3dphotonicnanostructures
AT martorellj anomalousgroupvelocityatthehighenergyrangeofreal3dphotonicnanostructures
AT lozanog anomalousgroupvelocityatthehighenergyrangeofreal3dphotonicnanostructures
AT miguezh anomalousgroupvelocityatthehighenergyrangeofreal3dphotonicnanostructures
AT doradola anomalousgroupvelocityatthehighenergyrangeofreal3dphotonicnanostructures
AT depinera anomalousgroupvelocityatthehighenergyrangeofreal3dphotonicnanostructures
_version_ 1807321099562647552