id todo:paper_02731177_v44_n4_p494_Llamedo
record_format dspace
spelling todo:paper_02731177_v44_n4_p494_Llamedo2023-10-03T15:15:39Z A gravity wave analysis near to the Andes Range from GPS radio occultation data and mesoscale numerical simulations: Two case studies Llamedo, P. de la Torre, A. Alexander, P. Luna, D. Schmidt, T. Wickert, J. Andes GPS RO Gravity waves WRF Andes Argentina Atmospheric parameters Deep convection Eastern side Geostrophic adjustment Global map GPS RO Intrinsic frequency Lines-of-sight Mesoscale Mountain wave Natural laboratories Numerical simulation Phase surface Propagation characteristics Radio occultations Relative contribution Relative positions Satellite mission Single event Statistical study Tangent point Topographic forcing Tropical regions Wave activity Wave analysis Wave energy Weather research and forecasting WRF Atmospheric turbulence Cosmology Geodetic satellites Global positioning system Gravity waves Hydrodynamics Landforms Wave energy conversion Waves Weather forecasting Gravitational effects Global maps of potential wave energy per unit mass, recently performed with the Global Positioning System (GPS) Radio Occultation (RO) technique and different satellite missions (CHAMP and SAC-C since 2001, GRACE and COSMIC since 2006) revealed in Argentina, at the eastern side of the highest Andes Mountains, a considerable wave activity (WA) in comparison with other extra-tropical regions. The main gravity wave (GW) sources in this natural laboratory are deep convection (mainly during late Spring and Summer), topographic forcing and geostrophic adjustment. The mesoscale numerical WRF (Weather Research and Forecasting) 2.1.2 model was used to simulate the atmospheric parameters during two representative RO events showing apparent intense WA in this region. The significance of the relative position of the RO lines of sight, the line of tangent points and GW phase surfaces during each event is discussed in relation with the apparent WA detected. The GPS RO technique may not be by itself reliable enough to quantify and locate WA of single events. Nevertheless, it should be considered a useful tool to observe the global WA from statistical studies. We also discuss the relative contribution of high and medium intrinsic frequency mountain waves regularly observed, coexisting with inertio gravity waves, their origin and propagation characteristics. © 2009 COSPAR. Fil:Llamedo, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:de la Torre, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Alexander, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_02731177_v44_n4_p494_Llamedo
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Andes
GPS RO
Gravity waves
WRF
Andes
Argentina
Atmospheric parameters
Deep convection
Eastern side
Geostrophic adjustment
Global map
GPS RO
Intrinsic frequency
Lines-of-sight
Mesoscale
Mountain wave
Natural laboratories
Numerical simulation
Phase surface
Propagation characteristics
Radio occultations
Relative contribution
Relative positions
Satellite mission
Single event
Statistical study
Tangent point
Topographic forcing
Tropical regions
Wave activity
Wave analysis
Wave energy
Weather research and forecasting
WRF
Atmospheric turbulence
Cosmology
Geodetic satellites
Global positioning system
Gravity waves
Hydrodynamics
Landforms
Wave energy conversion
Waves
Weather forecasting
Gravitational effects
spellingShingle Andes
GPS RO
Gravity waves
WRF
Andes
Argentina
Atmospheric parameters
Deep convection
Eastern side
Geostrophic adjustment
Global map
GPS RO
Intrinsic frequency
Lines-of-sight
Mesoscale
Mountain wave
Natural laboratories
Numerical simulation
Phase surface
Propagation characteristics
Radio occultations
Relative contribution
Relative positions
Satellite mission
Single event
Statistical study
Tangent point
Topographic forcing
Tropical regions
Wave activity
Wave analysis
Wave energy
Weather research and forecasting
WRF
Atmospheric turbulence
Cosmology
Geodetic satellites
Global positioning system
Gravity waves
Hydrodynamics
Landforms
Wave energy conversion
Waves
Weather forecasting
Gravitational effects
Llamedo, P.
de la Torre, A.
Alexander, P.
Luna, D.
Schmidt, T.
Wickert, J.
A gravity wave analysis near to the Andes Range from GPS radio occultation data and mesoscale numerical simulations: Two case studies
topic_facet Andes
GPS RO
Gravity waves
WRF
Andes
Argentina
Atmospheric parameters
Deep convection
Eastern side
Geostrophic adjustment
Global map
GPS RO
Intrinsic frequency
Lines-of-sight
Mesoscale
Mountain wave
Natural laboratories
Numerical simulation
Phase surface
Propagation characteristics
Radio occultations
Relative contribution
Relative positions
Satellite mission
Single event
Statistical study
Tangent point
Topographic forcing
Tropical regions
Wave activity
Wave analysis
Wave energy
Weather research and forecasting
WRF
Atmospheric turbulence
Cosmology
Geodetic satellites
Global positioning system
Gravity waves
Hydrodynamics
Landforms
Wave energy conversion
Waves
Weather forecasting
Gravitational effects
description Global maps of potential wave energy per unit mass, recently performed with the Global Positioning System (GPS) Radio Occultation (RO) technique and different satellite missions (CHAMP and SAC-C since 2001, GRACE and COSMIC since 2006) revealed in Argentina, at the eastern side of the highest Andes Mountains, a considerable wave activity (WA) in comparison with other extra-tropical regions. The main gravity wave (GW) sources in this natural laboratory are deep convection (mainly during late Spring and Summer), topographic forcing and geostrophic adjustment. The mesoscale numerical WRF (Weather Research and Forecasting) 2.1.2 model was used to simulate the atmospheric parameters during two representative RO events showing apparent intense WA in this region. The significance of the relative position of the RO lines of sight, the line of tangent points and GW phase surfaces during each event is discussed in relation with the apparent WA detected. The GPS RO technique may not be by itself reliable enough to quantify and locate WA of single events. Nevertheless, it should be considered a useful tool to observe the global WA from statistical studies. We also discuss the relative contribution of high and medium intrinsic frequency mountain waves regularly observed, coexisting with inertio gravity waves, their origin and propagation characteristics. © 2009 COSPAR.
format JOUR
author Llamedo, P.
de la Torre, A.
Alexander, P.
Luna, D.
Schmidt, T.
Wickert, J.
author_facet Llamedo, P.
de la Torre, A.
Alexander, P.
Luna, D.
Schmidt, T.
Wickert, J.
author_sort Llamedo, P.
title A gravity wave analysis near to the Andes Range from GPS radio occultation data and mesoscale numerical simulations: Two case studies
title_short A gravity wave analysis near to the Andes Range from GPS radio occultation data and mesoscale numerical simulations: Two case studies
title_full A gravity wave analysis near to the Andes Range from GPS radio occultation data and mesoscale numerical simulations: Two case studies
title_fullStr A gravity wave analysis near to the Andes Range from GPS radio occultation data and mesoscale numerical simulations: Two case studies
title_full_unstemmed A gravity wave analysis near to the Andes Range from GPS radio occultation data and mesoscale numerical simulations: Two case studies
title_sort gravity wave analysis near to the andes range from gps radio occultation data and mesoscale numerical simulations: two case studies
url http://hdl.handle.net/20.500.12110/paper_02731177_v44_n4_p494_Llamedo
work_keys_str_mv AT llamedop agravitywaveanalysisneartotheandesrangefromgpsradiooccultationdataandmesoscalenumericalsimulationstwocasestudies
AT delatorrea agravitywaveanalysisneartotheandesrangefromgpsradiooccultationdataandmesoscalenumericalsimulationstwocasestudies
AT alexanderp agravitywaveanalysisneartotheandesrangefromgpsradiooccultationdataandmesoscalenumericalsimulationstwocasestudies
AT lunad agravitywaveanalysisneartotheandesrangefromgpsradiooccultationdataandmesoscalenumericalsimulationstwocasestudies
AT schmidtt agravitywaveanalysisneartotheandesrangefromgpsradiooccultationdataandmesoscalenumericalsimulationstwocasestudies
AT wickertj agravitywaveanalysisneartotheandesrangefromgpsradiooccultationdataandmesoscalenumericalsimulationstwocasestudies
AT llamedop gravitywaveanalysisneartotheandesrangefromgpsradiooccultationdataandmesoscalenumericalsimulationstwocasestudies
AT delatorrea gravitywaveanalysisneartotheandesrangefromgpsradiooccultationdataandmesoscalenumericalsimulationstwocasestudies
AT alexanderp gravitywaveanalysisneartotheandesrangefromgpsradiooccultationdataandmesoscalenumericalsimulationstwocasestudies
AT lunad gravitywaveanalysisneartotheandesrangefromgpsradiooccultationdataandmesoscalenumericalsimulationstwocasestudies
AT schmidtt gravitywaveanalysisneartotheandesrangefromgpsradiooccultationdataandmesoscalenumericalsimulationstwocasestudies
AT wickertj gravitywaveanalysisneartotheandesrangefromgpsradiooccultationdataandmesoscalenumericalsimulationstwocasestudies
_version_ 1807321606229327872