Algorithms for finding clique-transversals of graphs

A clique-transversal of a graph G is a subset of vertices intersecting all the cliques of G. It is NP-hard to determine the minimum cardinality τ c of a clique-transversal of G. In this work, first we propose an algorithm for determining this parameter for a general graph, which runs in polynomial t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Durán, G., Lin, M.C., Mera, S., Szwarcfiter, J.L.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_02545330_v157_n1_p37_Duran
Aporte de:
id todo:paper_02545330_v157_n1_p37_Duran
record_format dspace
spelling todo:paper_02545330_v157_n1_p37_Duran2023-10-03T15:11:33Z Algorithms for finding clique-transversals of graphs Durán, G. Lin, M.C. Mera, S. Szwarcfiter, J.L. 3K2̄-free circular-arc graphs Algorithms Circular-arc graphs Clique-transversals Helly circular-arc graphs A clique-transversal of a graph G is a subset of vertices intersecting all the cliques of G. It is NP-hard to determine the minimum cardinality τ c of a clique-transversal of G. In this work, first we propose an algorithm for determining this parameter for a general graph, which runs in polynomial time, for fixed τ c . This algorithm is employed for finding the minimum cardinality clique-transversal of 3K2̄-free circular-arc graphs in O(n 4) time. Further we describe an algorithm for determining τ c of a Helly circular-arc graph in O(n) time. This represents an improvement over an existing algorithm by Guruswami and Pandu Rangan which requires O(n 2) time. Finally, the last proposed algorithm is modified, so as to solve the weighted version of the corresponding problem, in O(n 2) time. © 2007 Springer Science+Business Media, LLC. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_02545330_v157_n1_p37_Duran
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic 3K2̄-free circular-arc graphs
Algorithms
Circular-arc graphs
Clique-transversals
Helly circular-arc graphs
spellingShingle 3K2̄-free circular-arc graphs
Algorithms
Circular-arc graphs
Clique-transversals
Helly circular-arc graphs
Durán, G.
Lin, M.C.
Mera, S.
Szwarcfiter, J.L.
Algorithms for finding clique-transversals of graphs
topic_facet 3K2̄-free circular-arc graphs
Algorithms
Circular-arc graphs
Clique-transversals
Helly circular-arc graphs
description A clique-transversal of a graph G is a subset of vertices intersecting all the cliques of G. It is NP-hard to determine the minimum cardinality τ c of a clique-transversal of G. In this work, first we propose an algorithm for determining this parameter for a general graph, which runs in polynomial time, for fixed τ c . This algorithm is employed for finding the minimum cardinality clique-transversal of 3K2̄-free circular-arc graphs in O(n 4) time. Further we describe an algorithm for determining τ c of a Helly circular-arc graph in O(n) time. This represents an improvement over an existing algorithm by Guruswami and Pandu Rangan which requires O(n 2) time. Finally, the last proposed algorithm is modified, so as to solve the weighted version of the corresponding problem, in O(n 2) time. © 2007 Springer Science+Business Media, LLC.
format JOUR
author Durán, G.
Lin, M.C.
Mera, S.
Szwarcfiter, J.L.
author_facet Durán, G.
Lin, M.C.
Mera, S.
Szwarcfiter, J.L.
author_sort Durán, G.
title Algorithms for finding clique-transversals of graphs
title_short Algorithms for finding clique-transversals of graphs
title_full Algorithms for finding clique-transversals of graphs
title_fullStr Algorithms for finding clique-transversals of graphs
title_full_unstemmed Algorithms for finding clique-transversals of graphs
title_sort algorithms for finding clique-transversals of graphs
url http://hdl.handle.net/20.500.12110/paper_02545330_v157_n1_p37_Duran
work_keys_str_mv AT durang algorithmsforfindingcliquetransversalsofgraphs
AT linmc algorithmsforfindingcliquetransversalsofgraphs
AT meras algorithmsforfindingcliquetransversalsofgraphs
AT szwarcfiterjl algorithmsforfindingcliquetransversalsofgraphs
_version_ 1807323765940420608