Quaternionic (super) twistors extensions and general superspaces
In a attempt to treat a supergravity as a tensor representation, the four-dimensional N-extended quaternionic superspaces are constructed from the (diffeomorphyc) graded extension of the ordinary Penrose-twistor formulation, performed in a previous work of the authors [D. J. Cirilo-Lombardo and V. N...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_02198878_v14_n1_p_CiriloLombardo |
Aporte de: |
id |
todo:paper_02198878_v14_n1_p_CiriloLombardo |
---|---|
record_format |
dspace |
spelling |
todo:paper_02198878_v14_n1_p_CiriloLombardo2023-10-03T15:11:11Z Quaternionic (super) twistors extensions and general superspaces Cirilo-Lombardo, D.J. Pervushin, V.N. almost complex structures coherent states Supergeometry In a attempt to treat a supergravity as a tensor representation, the four-dimensional N-extended quaternionic superspaces are constructed from the (diffeomorphyc) graded extension of the ordinary Penrose-twistor formulation, performed in a previous work of the authors [D. J. Cirilo-Lombardo and V. N. Pervushin, Int. J. Geom. Methods Mod. Phys., doi: http://dx.doi.org/10.1142/S0219887816501139.], with N = p + k. These quaternionic superspaces have 4 + k(N - k) even-quaternionic coordinates and 4N odd-quaternionic coordinates, where each coordinate is a quaternion composed by four ℂ-fields (bosons and fermions respectively). The fields content as the dimensionality (even and odd sectors) of these superspaces are given and exemplified by selected physical cases. In this case, the number of fields of the supergravity is determined by the number of components of the tensor representation of the four-dimensional N-extended quaternionic superspaces. The role of tensorial central charges for any N even USp(N) = Sp(N, ℍℂ) ∩ U(N, ℍℂ) is elucidated from this theoretical context. © 2017 World Scientific Publishing Company. Fil:Cirilo-Lombardo, D.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_02198878_v14_n1_p_CiriloLombardo |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
almost complex structures coherent states Supergeometry |
spellingShingle |
almost complex structures coherent states Supergeometry Cirilo-Lombardo, D.J. Pervushin, V.N. Quaternionic (super) twistors extensions and general superspaces |
topic_facet |
almost complex structures coherent states Supergeometry |
description |
In a attempt to treat a supergravity as a tensor representation, the four-dimensional N-extended quaternionic superspaces are constructed from the (diffeomorphyc) graded extension of the ordinary Penrose-twistor formulation, performed in a previous work of the authors [D. J. Cirilo-Lombardo and V. N. Pervushin, Int. J. Geom. Methods Mod. Phys., doi: http://dx.doi.org/10.1142/S0219887816501139.], with N = p + k. These quaternionic superspaces have 4 + k(N - k) even-quaternionic coordinates and 4N odd-quaternionic coordinates, where each coordinate is a quaternion composed by four ℂ-fields (bosons and fermions respectively). The fields content as the dimensionality (even and odd sectors) of these superspaces are given and exemplified by selected physical cases. In this case, the number of fields of the supergravity is determined by the number of components of the tensor representation of the four-dimensional N-extended quaternionic superspaces. The role of tensorial central charges for any N even USp(N) = Sp(N, ℍℂ) ∩ U(N, ℍℂ) is elucidated from this theoretical context. © 2017 World Scientific Publishing Company. |
format |
JOUR |
author |
Cirilo-Lombardo, D.J. Pervushin, V.N. |
author_facet |
Cirilo-Lombardo, D.J. Pervushin, V.N. |
author_sort |
Cirilo-Lombardo, D.J. |
title |
Quaternionic (super) twistors extensions and general superspaces |
title_short |
Quaternionic (super) twistors extensions and general superspaces |
title_full |
Quaternionic (super) twistors extensions and general superspaces |
title_fullStr |
Quaternionic (super) twistors extensions and general superspaces |
title_full_unstemmed |
Quaternionic (super) twistors extensions and general superspaces |
title_sort |
quaternionic (super) twistors extensions and general superspaces |
url |
http://hdl.handle.net/20.500.12110/paper_02198878_v14_n1_p_CiriloLombardo |
work_keys_str_mv |
AT cirilolombardodj quaternionicsupertwistorsextensionsandgeneralsuperspaces AT pervushinvn quaternionicsupertwistorsextensionsandgeneralsuperspaces |
_version_ |
1807318468440096768 |