A characterization of finite multipermutation solutions of the Yang-Baxter equation
We prove that a finite non-degenerate involutive set-theoretic solution (X, r) of the Yang{Baxter equation is a multipermutation solution if and only if its structure group G(X, r) admits a left ordering or equivalently it is poly-Z. © 2018 Universitat Autonoma de Barcelona. All rights reserved.
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_02141493_v62_n2_p641_Bachiller |
Aporte de: |
id |
todo:paper_02141493_v62_n2_p641_Bachiller |
---|---|
record_format |
dspace |
spelling |
todo:paper_02141493_v62_n2_p641_Bachiller2023-10-03T15:10:12Z A characterization of finite multipermutation solutions of the Yang-Baxter equation Bachiller, D. Cedó, F. Vendramin, L. Brace Ordered groups Poly-(infinite cyclic) group Set-theoretic solution Yang-Baxter equation We prove that a finite non-degenerate involutive set-theoretic solution (X, r) of the Yang{Baxter equation is a multipermutation solution if and only if its structure group G(X, r) admits a left ordering or equivalently it is poly-Z. © 2018 Universitat Autonoma de Barcelona. All rights reserved. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_02141493_v62_n2_p641_Bachiller |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Brace Ordered groups Poly-(infinite cyclic) group Set-theoretic solution Yang-Baxter equation |
spellingShingle |
Brace Ordered groups Poly-(infinite cyclic) group Set-theoretic solution Yang-Baxter equation Bachiller, D. Cedó, F. Vendramin, L. A characterization of finite multipermutation solutions of the Yang-Baxter equation |
topic_facet |
Brace Ordered groups Poly-(infinite cyclic) group Set-theoretic solution Yang-Baxter equation |
description |
We prove that a finite non-degenerate involutive set-theoretic solution (X, r) of the Yang{Baxter equation is a multipermutation solution if and only if its structure group G(X, r) admits a left ordering or equivalently it is poly-Z. © 2018 Universitat Autonoma de Barcelona. All rights reserved. |
format |
JOUR |
author |
Bachiller, D. Cedó, F. Vendramin, L. |
author_facet |
Bachiller, D. Cedó, F. Vendramin, L. |
author_sort |
Bachiller, D. |
title |
A characterization of finite multipermutation solutions of the Yang-Baxter equation |
title_short |
A characterization of finite multipermutation solutions of the Yang-Baxter equation |
title_full |
A characterization of finite multipermutation solutions of the Yang-Baxter equation |
title_fullStr |
A characterization of finite multipermutation solutions of the Yang-Baxter equation |
title_full_unstemmed |
A characterization of finite multipermutation solutions of the Yang-Baxter equation |
title_sort |
characterization of finite multipermutation solutions of the yang-baxter equation |
url |
http://hdl.handle.net/20.500.12110/paper_02141493_v62_n2_p641_Bachiller |
work_keys_str_mv |
AT bachillerd acharacterizationoffinitemultipermutationsolutionsoftheyangbaxterequation AT cedof acharacterizationoffinitemultipermutationsolutionsoftheyangbaxterequation AT vendraminl acharacterizationoffinitemultipermutationsolutionsoftheyangbaxterequation AT bachillerd characterizationoffinitemultipermutationsolutionsoftheyangbaxterequation AT cedof characterizationoffinitemultipermutationsolutionsoftheyangbaxterequation AT vendraminl characterizationoffinitemultipermutationsolutionsoftheyangbaxterequation |
_version_ |
1807316205579534336 |