Perfect necklaces

We introduce a variant of de Bruijn words that we call perfect necklaces. Fix a finite alphabet. Recall that a word is a finite sequence of symbols in the alphabet and a circular word, or necklace, is the equivalence class of a word under rotations. For positive integers k and n, we call a necklace...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alvarez, N., Becher, V., Ferrari, P.A., Yuhjtman, S.A.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_01968858_v80_n_p48_Alvarez
Aporte de:
id todo:paper_01968858_v80_n_p48_Alvarez
record_format dspace
spelling todo:paper_01968858_v80_n_p48_Alvarez2023-10-03T15:09:49Z Perfect necklaces Alvarez, N. Becher, V. Ferrari, P.A. Yuhjtman, S.A. Combinatorics on words de Bruijn words Necklaces Statistical tests of finite size Statistical tests Combinatorics on words De Bruijn Finite alphabet Finite size Infinite periodic sequence Lexicographic order Necklaces Positive integers Equivalence classes We introduce a variant of de Bruijn words that we call perfect necklaces. Fix a finite alphabet. Recall that a word is a finite sequence of symbols in the alphabet and a circular word, or necklace, is the equivalence class of a word under rotations. For positive integers k and n, we call a necklace (k,n)-perfect if each word of length k occurs exactly n times at positions which are different modulo n for any convention on the starting point. We call a necklace perfect if it is (k,k)-perfect for some k. We prove that every arithmetic sequence with difference coprime with the alphabet size induces a perfect necklace. In particular, the concatenation of all words of the same length in lexicographic order yields a perfect necklace. For each k and n, we give a closed formula for the number of (k,n)-perfect necklaces. Finally, we prove that every infinite periodic sequence whose period coincides with some (k,n)-perfect necklace for some k and some n, passes all statistical tests of size up to k, but not all larger tests. This last theorem motivated this work. © 2016 Elsevier Inc. All rights reserved. Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Ferrari, P.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Yuhjtman, S.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_01968858_v80_n_p48_Alvarez
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Combinatorics on words
de Bruijn words
Necklaces
Statistical tests of finite size
Statistical tests
Combinatorics on words
De Bruijn
Finite alphabet
Finite size
Infinite periodic sequence
Lexicographic order
Necklaces
Positive integers
Equivalence classes
spellingShingle Combinatorics on words
de Bruijn words
Necklaces
Statistical tests of finite size
Statistical tests
Combinatorics on words
De Bruijn
Finite alphabet
Finite size
Infinite periodic sequence
Lexicographic order
Necklaces
Positive integers
Equivalence classes
Alvarez, N.
Becher, V.
Ferrari, P.A.
Yuhjtman, S.A.
Perfect necklaces
topic_facet Combinatorics on words
de Bruijn words
Necklaces
Statistical tests of finite size
Statistical tests
Combinatorics on words
De Bruijn
Finite alphabet
Finite size
Infinite periodic sequence
Lexicographic order
Necklaces
Positive integers
Equivalence classes
description We introduce a variant of de Bruijn words that we call perfect necklaces. Fix a finite alphabet. Recall that a word is a finite sequence of symbols in the alphabet and a circular word, or necklace, is the equivalence class of a word under rotations. For positive integers k and n, we call a necklace (k,n)-perfect if each word of length k occurs exactly n times at positions which are different modulo n for any convention on the starting point. We call a necklace perfect if it is (k,k)-perfect for some k. We prove that every arithmetic sequence with difference coprime with the alphabet size induces a perfect necklace. In particular, the concatenation of all words of the same length in lexicographic order yields a perfect necklace. For each k and n, we give a closed formula for the number of (k,n)-perfect necklaces. Finally, we prove that every infinite periodic sequence whose period coincides with some (k,n)-perfect necklace for some k and some n, passes all statistical tests of size up to k, but not all larger tests. This last theorem motivated this work. © 2016 Elsevier Inc. All rights reserved.
format JOUR
author Alvarez, N.
Becher, V.
Ferrari, P.A.
Yuhjtman, S.A.
author_facet Alvarez, N.
Becher, V.
Ferrari, P.A.
Yuhjtman, S.A.
author_sort Alvarez, N.
title Perfect necklaces
title_short Perfect necklaces
title_full Perfect necklaces
title_fullStr Perfect necklaces
title_full_unstemmed Perfect necklaces
title_sort perfect necklaces
url http://hdl.handle.net/20.500.12110/paper_01968858_v80_n_p48_Alvarez
work_keys_str_mv AT alvarezn perfectnecklaces
AT becherv perfectnecklaces
AT ferraripa perfectnecklaces
AT yuhjtmansa perfectnecklaces
_version_ 1807322523694530560