id todo:paper_01918141_v92_n_p116_Schreurs
record_format dspace
spelling todo:paper_01918141_v92_n_p116_Schreurs2023-10-03T15:09:04Z Benchmarking analogue models of brittle thrust wedges Schreurs, G. Buiter, S.J.H. Boutelier, J. Burberry, C. Callot, J.-P. Cavozzi, C. Cerca, M. Chen, J.-H. Cristallini, E. Cruden, A.R. Cruz, L. Daniel, J.-M. Da Poian, G. Garcia, V.H. Gomes, C.J.S. Grall, C. Guillot, Y. Guzmán, C. Hidayah, T.N. Hilley, G. Klinkmüller, M. Koyi, H.A. Lu, C.-Y. Maillot, B. Meriaux, C. Nilfouroushan, F. Pan, C.-C. Pillot, D. Portillo, R. Rosenau, M. Schellart, W.P. Schlische, R.W. Take, A. Vendeville, B. Vergnaud, M. Vettori, M. Wang, S.-H. Withjack, M.O. Yagupsky, D. Yamada, Y. Analogue modeling Benchmarking Brittle wedges Cohesion Critical taper Friction Sand Shear zones Thrust wedges Adhesion Benchmarking Friction Strain Tribology Analogue modeling Brittle wedges Cohesion Critical taper Shear zone Thrust wedges Sand analog model benchmarking cohesion friction numerical model sand shear zone thrust We performed a quantitative comparison of brittle thrust wedge experiments to evaluate the variability among analogue models and to appraise the reproducibility and limits of model interpretation. Fifteen analogue modeling laboratories participated in this benchmark initiative. Each laboratory received a shipment of the same type of quartz and corundum sand and all laboratories adhered to a stringent model building protocol and used the same type of foil to cover base and sidewalls of the sandbox. Sieve structure, sifting height, filling rate, and details on off-scraping of excess sand followed prescribed procedures. Our analogue benchmark shows that even for simple plane-strain experiments with prescribed stringent model construction techniques, quantitative model results show variability, most notably for surface slope, thrust spacing and number of forward and backthrusts. One of the sources of the variability in model results is related to slight variations in how sand is deposited in the sandbox. Small changes in sifting height, sifting rate, and scraping will result in slightly heterogeneous material bulk densities, which will affect the mechanical properties of the sand, and will result in lateral and vertical differences in peak and boundary friction angles, as well as cohesion values once the model is constructed. Initial variations in basal friction are inferred to play the most important role in causing model variability. Our comparison shows that the human factor plays a decisive role, and even when one modeler repeats the same experiment, quantitative model results still show variability. Our observations highlight the limits of up-scaling quantitative analogue model results to nature or for making comparisons with numerical models. The frictional behavior of sand is highly sensitive to small variations in material state or experimental set-up, and hence, it will remain difficult to scale quantitative results such as number of thrusts, thrust spacing, and pop-up width from model to nature. © 2016 Elsevier Ltd Fil:Cristallini, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Garcia, V.H. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Guzmán, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Yagupsky, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_01918141_v92_n_p116_Schreurs
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Analogue modeling
Benchmarking
Brittle wedges
Cohesion
Critical taper
Friction
Sand
Shear zones
Thrust wedges
Adhesion
Benchmarking
Friction
Strain
Tribology
Analogue modeling
Brittle wedges
Cohesion
Critical taper
Shear zone
Thrust wedges
Sand
analog model
benchmarking
cohesion
friction
numerical model
sand
shear zone
thrust
spellingShingle Analogue modeling
Benchmarking
Brittle wedges
Cohesion
Critical taper
Friction
Sand
Shear zones
Thrust wedges
Adhesion
Benchmarking
Friction
Strain
Tribology
Analogue modeling
Brittle wedges
Cohesion
Critical taper
Shear zone
Thrust wedges
Sand
analog model
benchmarking
cohesion
friction
numerical model
sand
shear zone
thrust
Schreurs, G.
Buiter, S.J.H.
Boutelier, J.
Burberry, C.
Callot, J.-P.
Cavozzi, C.
Cerca, M.
Chen, J.-H.
Cristallini, E.
Cruden, A.R.
Cruz, L.
Daniel, J.-M.
Da Poian, G.
Garcia, V.H.
Gomes, C.J.S.
Grall, C.
Guillot, Y.
Guzmán, C.
Hidayah, T.N.
Hilley, G.
Klinkmüller, M.
Koyi, H.A.
Lu, C.-Y.
Maillot, B.
Meriaux, C.
Nilfouroushan, F.
Pan, C.-C.
Pillot, D.
Portillo, R.
Rosenau, M.
Schellart, W.P.
Schlische, R.W.
Take, A.
Vendeville, B.
Vergnaud, M.
Vettori, M.
Wang, S.-H.
Withjack, M.O.
Yagupsky, D.
Yamada, Y.
Benchmarking analogue models of brittle thrust wedges
topic_facet Analogue modeling
Benchmarking
Brittle wedges
Cohesion
Critical taper
Friction
Sand
Shear zones
Thrust wedges
Adhesion
Benchmarking
Friction
Strain
Tribology
Analogue modeling
Brittle wedges
Cohesion
Critical taper
Shear zone
Thrust wedges
Sand
analog model
benchmarking
cohesion
friction
numerical model
sand
shear zone
thrust
description We performed a quantitative comparison of brittle thrust wedge experiments to evaluate the variability among analogue models and to appraise the reproducibility and limits of model interpretation. Fifteen analogue modeling laboratories participated in this benchmark initiative. Each laboratory received a shipment of the same type of quartz and corundum sand and all laboratories adhered to a stringent model building protocol and used the same type of foil to cover base and sidewalls of the sandbox. Sieve structure, sifting height, filling rate, and details on off-scraping of excess sand followed prescribed procedures. Our analogue benchmark shows that even for simple plane-strain experiments with prescribed stringent model construction techniques, quantitative model results show variability, most notably for surface slope, thrust spacing and number of forward and backthrusts. One of the sources of the variability in model results is related to slight variations in how sand is deposited in the sandbox. Small changes in sifting height, sifting rate, and scraping will result in slightly heterogeneous material bulk densities, which will affect the mechanical properties of the sand, and will result in lateral and vertical differences in peak and boundary friction angles, as well as cohesion values once the model is constructed. Initial variations in basal friction are inferred to play the most important role in causing model variability. Our comparison shows that the human factor plays a decisive role, and even when one modeler repeats the same experiment, quantitative model results still show variability. Our observations highlight the limits of up-scaling quantitative analogue model results to nature or for making comparisons with numerical models. The frictional behavior of sand is highly sensitive to small variations in material state or experimental set-up, and hence, it will remain difficult to scale quantitative results such as number of thrusts, thrust spacing, and pop-up width from model to nature. © 2016 Elsevier Ltd
format JOUR
author Schreurs, G.
Buiter, S.J.H.
Boutelier, J.
Burberry, C.
Callot, J.-P.
Cavozzi, C.
Cerca, M.
Chen, J.-H.
Cristallini, E.
Cruden, A.R.
Cruz, L.
Daniel, J.-M.
Da Poian, G.
Garcia, V.H.
Gomes, C.J.S.
Grall, C.
Guillot, Y.
Guzmán, C.
Hidayah, T.N.
Hilley, G.
Klinkmüller, M.
Koyi, H.A.
Lu, C.-Y.
Maillot, B.
Meriaux, C.
Nilfouroushan, F.
Pan, C.-C.
Pillot, D.
Portillo, R.
Rosenau, M.
Schellart, W.P.
Schlische, R.W.
Take, A.
Vendeville, B.
Vergnaud, M.
Vettori, M.
Wang, S.-H.
Withjack, M.O.
Yagupsky, D.
Yamada, Y.
author_facet Schreurs, G.
Buiter, S.J.H.
Boutelier, J.
Burberry, C.
Callot, J.-P.
Cavozzi, C.
Cerca, M.
Chen, J.-H.
Cristallini, E.
Cruden, A.R.
Cruz, L.
Daniel, J.-M.
Da Poian, G.
Garcia, V.H.
Gomes, C.J.S.
Grall, C.
Guillot, Y.
Guzmán, C.
Hidayah, T.N.
Hilley, G.
Klinkmüller, M.
Koyi, H.A.
Lu, C.-Y.
Maillot, B.
Meriaux, C.
Nilfouroushan, F.
Pan, C.-C.
Pillot, D.
Portillo, R.
Rosenau, M.
Schellart, W.P.
Schlische, R.W.
Take, A.
Vendeville, B.
Vergnaud, M.
Vettori, M.
Wang, S.-H.
Withjack, M.O.
Yagupsky, D.
Yamada, Y.
author_sort Schreurs, G.
title Benchmarking analogue models of brittle thrust wedges
title_short Benchmarking analogue models of brittle thrust wedges
title_full Benchmarking analogue models of brittle thrust wedges
title_fullStr Benchmarking analogue models of brittle thrust wedges
title_full_unstemmed Benchmarking analogue models of brittle thrust wedges
title_sort benchmarking analogue models of brittle thrust wedges
url http://hdl.handle.net/20.500.12110/paper_01918141_v92_n_p116_Schreurs
work_keys_str_mv AT schreursg benchmarkinganaloguemodelsofbrittlethrustwedges
AT buitersjh benchmarkinganaloguemodelsofbrittlethrustwedges
AT boutelierj benchmarkinganaloguemodelsofbrittlethrustwedges
AT burberryc benchmarkinganaloguemodelsofbrittlethrustwedges
AT callotjp benchmarkinganaloguemodelsofbrittlethrustwedges
AT cavozzic benchmarkinganaloguemodelsofbrittlethrustwedges
AT cercam benchmarkinganaloguemodelsofbrittlethrustwedges
AT chenjh benchmarkinganaloguemodelsofbrittlethrustwedges
AT cristallinie benchmarkinganaloguemodelsofbrittlethrustwedges
AT crudenar benchmarkinganaloguemodelsofbrittlethrustwedges
AT cruzl benchmarkinganaloguemodelsofbrittlethrustwedges
AT danieljm benchmarkinganaloguemodelsofbrittlethrustwedges
AT dapoiang benchmarkinganaloguemodelsofbrittlethrustwedges
AT garciavh benchmarkinganaloguemodelsofbrittlethrustwedges
AT gomescjs benchmarkinganaloguemodelsofbrittlethrustwedges
AT grallc benchmarkinganaloguemodelsofbrittlethrustwedges
AT guilloty benchmarkinganaloguemodelsofbrittlethrustwedges
AT guzmanc benchmarkinganaloguemodelsofbrittlethrustwedges
AT hidayahtn benchmarkinganaloguemodelsofbrittlethrustwedges
AT hilleyg benchmarkinganaloguemodelsofbrittlethrustwedges
AT klinkmullerm benchmarkinganaloguemodelsofbrittlethrustwedges
AT koyiha benchmarkinganaloguemodelsofbrittlethrustwedges
AT lucy benchmarkinganaloguemodelsofbrittlethrustwedges
AT maillotb benchmarkinganaloguemodelsofbrittlethrustwedges
AT meriauxc benchmarkinganaloguemodelsofbrittlethrustwedges
AT nilfouroushanf benchmarkinganaloguemodelsofbrittlethrustwedges
AT pancc benchmarkinganaloguemodelsofbrittlethrustwedges
AT pillotd benchmarkinganaloguemodelsofbrittlethrustwedges
AT portillor benchmarkinganaloguemodelsofbrittlethrustwedges
AT rosenaum benchmarkinganaloguemodelsofbrittlethrustwedges
AT schellartwp benchmarkinganaloguemodelsofbrittlethrustwedges
AT schlischerw benchmarkinganaloguemodelsofbrittlethrustwedges
AT takea benchmarkinganaloguemodelsofbrittlethrustwedges
AT vendevilleb benchmarkinganaloguemodelsofbrittlethrustwedges
AT vergnaudm benchmarkinganaloguemodelsofbrittlethrustwedges
AT vettorim benchmarkinganaloguemodelsofbrittlethrustwedges
AT wangsh benchmarkinganaloguemodelsofbrittlethrustwedges
AT withjackmo benchmarkinganaloguemodelsofbrittlethrustwedges
AT yagupskyd benchmarkinganaloguemodelsofbrittlethrustwedges
AT yamaday benchmarkinganaloguemodelsofbrittlethrustwedges
_version_ 1782030424638226432