Additive edge labelings
Let G = (V, E) be a graph and d a positive integer. We study the following problem: for which labelings fE : E → Zd is there a labeling fV : V → Zd such that fE (i, j) = fV (i) + fV (j) (mod d), for every edge (i, j) ∈ E? We also explore the connections of the equivalent multiplicative version to to...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0166218X_v158_n5_p444_Dickenstein |
Aporte de: |
id |
todo:paper_0166218X_v158_n5_p444_Dickenstein |
---|---|
record_format |
dspace |
spelling |
todo:paper_0166218X_v158_n5_p444_Dickenstein2023-10-03T15:03:37Z Additive edge labelings Dickenstein, A. Tobis, E.A. Cycles Graph labeling Incidence matrix Kernel Toric ideal Following problem Graph labelings Incidence matrices Labelings Multiplicative version Polynomial algorithm Positive integers Possible solutions Toric ideals Labeling Let G = (V, E) be a graph and d a positive integer. We study the following problem: for which labelings fE : E → Zd is there a labeling fV : V → Zd such that fE (i, j) = fV (i) + fV (j) (mod d), for every edge (i, j) ∈ E? We also explore the connections of the equivalent multiplicative version to toric ideals. We derive a polynomial algorithm to answer these questions and to obtain all possible solutions. © 2009 Elsevier B.V. All rights reserved. Fil:Dickenstein, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Tobis, E.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0166218X_v158_n5_p444_Dickenstein |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Cycles Graph labeling Incidence matrix Kernel Toric ideal Following problem Graph labelings Incidence matrices Labelings Multiplicative version Polynomial algorithm Positive integers Possible solutions Toric ideals Labeling |
spellingShingle |
Cycles Graph labeling Incidence matrix Kernel Toric ideal Following problem Graph labelings Incidence matrices Labelings Multiplicative version Polynomial algorithm Positive integers Possible solutions Toric ideals Labeling Dickenstein, A. Tobis, E.A. Additive edge labelings |
topic_facet |
Cycles Graph labeling Incidence matrix Kernel Toric ideal Following problem Graph labelings Incidence matrices Labelings Multiplicative version Polynomial algorithm Positive integers Possible solutions Toric ideals Labeling |
description |
Let G = (V, E) be a graph and d a positive integer. We study the following problem: for which labelings fE : E → Zd is there a labeling fV : V → Zd such that fE (i, j) = fV (i) + fV (j) (mod d), for every edge (i, j) ∈ E? We also explore the connections of the equivalent multiplicative version to toric ideals. We derive a polynomial algorithm to answer these questions and to obtain all possible solutions. © 2009 Elsevier B.V. All rights reserved. |
format |
JOUR |
author |
Dickenstein, A. Tobis, E.A. |
author_facet |
Dickenstein, A. Tobis, E.A. |
author_sort |
Dickenstein, A. |
title |
Additive edge labelings |
title_short |
Additive edge labelings |
title_full |
Additive edge labelings |
title_fullStr |
Additive edge labelings |
title_full_unstemmed |
Additive edge labelings |
title_sort |
additive edge labelings |
url |
http://hdl.handle.net/20.500.12110/paper_0166218X_v158_n5_p444_Dickenstein |
work_keys_str_mv |
AT dickensteina additiveedgelabelings AT tobisea additiveedgelabelings |
_version_ |
1807316551052820480 |