Hochschild and cyclic homology of Yang-Mills algebras

The aim of this article is to present a detailed algebraic computation of the Hochschild and cyclic homology groups of the Yang-Mills algebras YM(n) (n ε ℕ ≥2) defined by A. Connes and M. Dubois-Violette in [8], continuing thus the study of these algebras that we have initiated in [17]. The computat...

Descripción completa

Detalles Bibliográficos
Autores principales: Herscovich, E., Solotar, A.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00754102_v_n665_p73_Herscovich
Aporte de:
id todo:paper_00754102_v_n665_p73_Herscovich
record_format dspace
spelling todo:paper_00754102_v_n665_p73_Herscovich2023-10-03T14:53:57Z Hochschild and cyclic homology of Yang-Mills algebras Herscovich, E. Solotar, A. The aim of this article is to present a detailed algebraic computation of the Hochschild and cyclic homology groups of the Yang-Mills algebras YM(n) (n ε ℕ ≥2) defined by A. Connes and M. Dubois-Violette in [8], continuing thus the study of these algebras that we have initiated in [17]. The computation involves the use of a spectral sequence associated to the natural filtration on the universal enveloping algebra YM(n) provided by a Lie ideal tnm(n) in nm(n) which is free as Lie algebra. As a corollary, we describe the Lie structure of the first Hochschild cohomology group. © Walter de Gruyter. Fil:Solotar, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00754102_v_n665_p73_Herscovich
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description The aim of this article is to present a detailed algebraic computation of the Hochschild and cyclic homology groups of the Yang-Mills algebras YM(n) (n ε ℕ ≥2) defined by A. Connes and M. Dubois-Violette in [8], continuing thus the study of these algebras that we have initiated in [17]. The computation involves the use of a spectral sequence associated to the natural filtration on the universal enveloping algebra YM(n) provided by a Lie ideal tnm(n) in nm(n) which is free as Lie algebra. As a corollary, we describe the Lie structure of the first Hochschild cohomology group. © Walter de Gruyter.
format JOUR
author Herscovich, E.
Solotar, A.
spellingShingle Herscovich, E.
Solotar, A.
Hochschild and cyclic homology of Yang-Mills algebras
author_facet Herscovich, E.
Solotar, A.
author_sort Herscovich, E.
title Hochschild and cyclic homology of Yang-Mills algebras
title_short Hochschild and cyclic homology of Yang-Mills algebras
title_full Hochschild and cyclic homology of Yang-Mills algebras
title_fullStr Hochschild and cyclic homology of Yang-Mills algebras
title_full_unstemmed Hochschild and cyclic homology of Yang-Mills algebras
title_sort hochschild and cyclic homology of yang-mills algebras
url http://hdl.handle.net/20.500.12110/paper_00754102_v_n665_p73_Herscovich
work_keys_str_mv AT herscoviche hochschildandcyclichomologyofyangmillsalgebras
AT solotara hochschildandcyclichomologyofyangmillsalgebras
_version_ 1807323289523060736