Inference under functional proportional and common principal component models
In many situations, when dealing with several populations with different covariance operators, equality of the operators is assumed. Usually, if this assumption does not hold, one estimates the covariance operator of each group separately, which leads to a large number of parameters. As in the multi...
Guardado en:
Autores principales: | Boente, G., Rodriguez, D., Sued, M. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0047259X_v101_n2_p464_Boente |
Aporte de: |
Ejemplares similares
-
Inference under functional proportional and common principal component models
por: Boente, G., et al.
Publicado: (2010) -
Inference under functional proportional and common principal component models
por: Boente, G., et al.
Publicado: (2010) -
Inference under functional proportional and common principal component models
por: Boente, Graciela Lina, et al.
Publicado: (2010) -
Kernel-based functional principal components
por: Boente, Graciela Lina
Publicado: (2000) -
Kernel-based functional principal components
por: Boente, G., et al.