Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces
We study the continuity and compactness of embeddings for radial Besov and Triebel-Lizorkin spaces with weights in the Muckenhoupt class A∞. The main tool is a discretization in terms of an almost orthogonal wavelet expansion adapted to the radial situation. © 2016 Instytut Matematyczny PAN.
Guardado en:
Autores principales: | De Nápoli, P.L., Drelichman, I., Saintier, N. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00393223_v233_n1_p47_DeNapoli |
Aporte de: |
Ejemplares similares
-
Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces
por: De Napoli, Pablo Luis, et al.
Publicado: (2016) -
Elementary proofs of embedding theorems for potential spaces of radial functions
por: de Nápoli, P.L., et al. -
Elementary proofs of embedding theorems for potential spaces of radial functions
Publicado: (2016) -
Weighted inequalities for the fractional Laplacian and the existence of extremals
por: De Nápoli, P., et al. -
Weighted convolution inequalities for radial functions
por: De Nápoli, P.L., et al.