Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces
We study the continuity and compactness of embeddings for radial Besov and Triebel-Lizorkin spaces with weights in the Muckenhoupt class A∞. The main tool is a discretization in terms of an almost orthogonal wavelet expansion adapted to the radial situation. © 2016 Instytut Matematyczny PAN.
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00393223_v233_n1_p47_DeNapoli |
Aporte de: |
id |
todo:paper_00393223_v233_n1_p47_DeNapoli |
---|---|
record_format |
dspace |
spelling |
todo:paper_00393223_v233_n1_p47_DeNapoli2023-10-03T14:49:48Z Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces De Nápoli, P.L. Drelichman, I. Saintier, N. Embedding theorems Muckenhoupt weights Radial functions Wavelet bases We study the continuity and compactness of embeddings for radial Besov and Triebel-Lizorkin spaces with weights in the Muckenhoupt class A∞. The main tool is a discretization in terms of an almost orthogonal wavelet expansion adapted to the radial situation. © 2016 Instytut Matematyczny PAN. Fil:De Nápoli, P.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Drelichman, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00393223_v233_n1_p47_DeNapoli |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Embedding theorems Muckenhoupt weights Radial functions Wavelet bases |
spellingShingle |
Embedding theorems Muckenhoupt weights Radial functions Wavelet bases De Nápoli, P.L. Drelichman, I. Saintier, N. Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces |
topic_facet |
Embedding theorems Muckenhoupt weights Radial functions Wavelet bases |
description |
We study the continuity and compactness of embeddings for radial Besov and Triebel-Lizorkin spaces with weights in the Muckenhoupt class A∞. The main tool is a discretization in terms of an almost orthogonal wavelet expansion adapted to the radial situation. © 2016 Instytut Matematyczny PAN. |
format |
JOUR |
author |
De Nápoli, P.L. Drelichman, I. Saintier, N. |
author_facet |
De Nápoli, P.L. Drelichman, I. Saintier, N. |
author_sort |
De Nápoli, P.L. |
title |
Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces |
title_short |
Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces |
title_full |
Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces |
title_fullStr |
Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces |
title_full_unstemmed |
Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces |
title_sort |
weighted embedding theorems for radial besov and triebel-lizorkin spaces |
url |
http://hdl.handle.net/20.500.12110/paper_00393223_v233_n1_p47_DeNapoli |
work_keys_str_mv |
AT denapolipl weightedembeddingtheoremsforradialbesovandtriebellizorkinspaces AT drelichmani weightedembeddingtheoremsforradialbesovandtriebellizorkinspaces AT saintiern weightedembeddingtheoremsforradialbesovandtriebellizorkinspaces |
_version_ |
1807318388156923904 |