Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces

We study the continuity and compactness of embeddings for radial Besov and Triebel-Lizorkin spaces with weights in the Muckenhoupt class A∞. The main tool is a discretization in terms of an almost orthogonal wavelet expansion adapted to the radial situation. © 2016 Instytut Matematyczny PAN.

Guardado en:
Detalles Bibliográficos
Autores principales: De Nápoli, P.L., Drelichman, I., Saintier, N.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00393223_v233_n1_p47_DeNapoli
Aporte de:
id todo:paper_00393223_v233_n1_p47_DeNapoli
record_format dspace
spelling todo:paper_00393223_v233_n1_p47_DeNapoli2023-10-03T14:49:48Z Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces De Nápoli, P.L. Drelichman, I. Saintier, N. Embedding theorems Muckenhoupt weights Radial functions Wavelet bases We study the continuity and compactness of embeddings for radial Besov and Triebel-Lizorkin spaces with weights in the Muckenhoupt class A∞. The main tool is a discretization in terms of an almost orthogonal wavelet expansion adapted to the radial situation. © 2016 Instytut Matematyczny PAN. Fil:De Nápoli, P.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Drelichman, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00393223_v233_n1_p47_DeNapoli
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Embedding theorems
Muckenhoupt weights
Radial functions
Wavelet bases
spellingShingle Embedding theorems
Muckenhoupt weights
Radial functions
Wavelet bases
De Nápoli, P.L.
Drelichman, I.
Saintier, N.
Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces
topic_facet Embedding theorems
Muckenhoupt weights
Radial functions
Wavelet bases
description We study the continuity and compactness of embeddings for radial Besov and Triebel-Lizorkin spaces with weights in the Muckenhoupt class A∞. The main tool is a discretization in terms of an almost orthogonal wavelet expansion adapted to the radial situation. © 2016 Instytut Matematyczny PAN.
format JOUR
author De Nápoli, P.L.
Drelichman, I.
Saintier, N.
author_facet De Nápoli, P.L.
Drelichman, I.
Saintier, N.
author_sort De Nápoli, P.L.
title Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces
title_short Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces
title_full Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces
title_fullStr Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces
title_full_unstemmed Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces
title_sort weighted embedding theorems for radial besov and triebel-lizorkin spaces
url http://hdl.handle.net/20.500.12110/paper_00393223_v233_n1_p47_DeNapoli
work_keys_str_mv AT denapolipl weightedembeddingtheoremsforradialbesovandtriebellizorkinspaces
AT drelichmani weightedembeddingtheoremsforradialbesovandtriebellizorkinspaces
AT saintiern weightedembeddingtheoremsforradialbesovandtriebellizorkinspaces
_version_ 1807318388156923904